Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Vitamin E discovery in maize could lead to more nutritious crop

New research has identified genes that control vitamin E content in maize grain, a finding that could lead to improving the nutritional profile of this staple crop.

Cornell University scientists and colleagues from other institutions combined different types of genetic association analyses to identify 14 genes across the genome that were involved in the synthesis of vitamin E. Six genes were newly discovered to encode proteins that contribute to a class of antioxidant compounds called tocochromanols, collectively known as vitamin E. Along with antioxidant properties, tocochromanols have been associated with good heart health in humans and proper functioning in plants.

"We have established a near-complete foundation for the genetic improvement of vitamin E in grain of maize and other major cereals," said Michael Gore, associate professor of plant breeding and genetics and a co-corresponding author of the study published in the journal, The Plant Cell.

"There has been talk, among breeders working to increase provitamin A in maize, that we could increase vitamin E at the same time," said Christine Diepenbrock, a graduate student in Gore's lab, and the paper's first author. "They are related compounds biochemically, and tocochromanols are essential for seed viability in that they prevent seed oils from going rancid throughout seed storage, germination and early seedling development."

Read the paper: Novel Loci Underlie Natural Variation in Vitamin E Levels in Maize Grain.

Article source: Cornell University.

News

Algae have land genes

500 million years ago, the first plants living in water took to land. The genetic adaptations associated with this transition can already be recognized in the genome of Chara braunii, a species of freshwater algae. An international research team headed by Marburg biologist Stefan Rensing reports on this in the journal Cell.


Rice plants evolve to adapt to flooding

Although water is essential for plant growth, excessive amounts can waterlog and kill a plant. In South and Southeast Asia, where periodic flooding occurs during the rainy season, the water depth can reach several meters for many months.


Invasive plants adapt to new environments, study finds

Invasive plants have the ability to adapt to new environments - and even behave like a native species, according to University of Stirling research.