Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Virus inhibits immune response of caterpillars and plants

It is well known that certain wasps suppress the immune systems of their caterpillar hosts so they can successfully raise their young within those hosts. Now researchers at Penn State show that, in addition to suppressing caterpillar immune systems, wasps also suppress the defense mechanisms of the plants on which the caterpillars feed, which ensures that the caterpillars will continue to provide a suitable environment for the wasps' offspring.

According to Gary Felton, professor and head of entomology, a type of virus, called a polydnavirus, resides within the ovaries of the female wasps and, when injected into caterpillar hosts, is responsible for suppressing both the caterpillar immune response and the plant defense mechanism.

"We found that not only do polydnaviruses suppress the immune systems of the caterpillars, but they also attenuate the defense responses of the caterpillars' host plant," said Felton. "The polydnavirus suppresses glucose oxidase in the saliva of caterpillars, which normally elicits plant defenses. Suppressing plant defenses in this way benefits the wasp and the virus by improving the wasp's development and survival within the caterpillar."

The team -- which included Ching-Wen Tan, doctoral student in entomology -- placed parasitized and non-parasitized caterpillars onto tomato plants. After allowing the caterpillars to feed on the plants for 10 hours, the researchers harvested the remaining leaves and examined them for enzyme and gene expression activity associated with a defense response.

"Using molecular and biochemical techniques, we found that parasitized caterpillars induced significantly lower enzyme activity and defense-gene expression among the tomato plants than the non-parasitized caterpillars," said Tan. "We also determined that the caterpillar's saliva, which was reduced in glucose oxidase by the polydnavirus, was responsible for inducing these lower defense responses in the plants."

The results appear online in the Proceedings of the National Academy of Sciences.

According to Felton, the team's results support the findings of another study by Feng Zhu of Wageningen University in The Netherlands and colleagues that appeared in the same issue of PNAS.

"That study also shows that the polydnavirus of a parasitoid-caterpillar system -- a different system from ours -- has a similar ability to influence host plant immunity," said Felton. "In nature, a significant percentage of caterpillars are parasitized by wasps. In addition, tens of thousands of wasp species harbor polydnaviruses. As a result, there is strong potential for our results and the results of the Feng Zhu team to be very common among many plant-herbivore interactions."

Tan adds that the results of the two studies suggest that the interaction between plants and their natural enemies is much more complex than previously thought.

"Our study demonstrates the important role that microorganisms play in plant-insect interactions," she said. "The ability of polydnaviruses, which possess less than a couple of hundred genes, to so dramatically affect wasps, caterpillars and plants is remarkable."

The Penn State team plans to examine whether other parasitic wasps and viruses that can parasitize a much broader range of caterpillar species also can suppress plant defenses in a similar capacity.

Read the paper: Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity.

Article source: Penn State.

Image credit: Gary Felton, Penn State

News

Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.


How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.


VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.