Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


UGR research calls current methods of studying photosynthesis into question

New theory developed by Prof. Andrew Kowalski, which records non-diffusive gas transport, key to calculating water use efficiency and CO2 concentrations in plants

The current scientific assumption that the transport of gases between the surface and atmosphere is produced exclusively through diffusion is mistaken, according to research conducted by Prof. Andrew Kowalski of the University of Granada’s Department of Applied Physics. His groundbreaking research describes how the flow of water vapour (which is not 100% diffusive), accounts for the greatest exchange of gases between the surface and the atmosphere, propelling a stream of air which originates in the surface. This discovery has important implications for fields such as biology and micrometeorology.

The new theory, which accounts for non-diffusive gas transport, is essential for calculating the water use efficiency of plants and the CO2 concentrations in their interior — a fundamental parameter when it comes to analysing photosynthesis. In the field of biology, research data related to the process of photosynthesis are altered by these variables. As Prof. Kowalski explains: “When we assume that the transport of all CO2 during photosynthesis is diffusive, we do not take into account the transport produced by the stream of air which is propelled by the water vapour emitted by plants. Therefore, photosynthesis is not being studied properly.”

This discovery also affects micrometeorology, since some theories within this field, such as the Monin-Obukhov similarity theory, which links gas flow to concentration gradients, must be reviewed in order to take non-diffusive flows into account.

Prof. Andrew Kowalski’s recently published his research findings in a paper entitled “The boundary condition for vertical velocity and its interdependence with surface gas exchange” in the prestigious international journal Atmospheric Chemistry and Physics.

Read the paper: The boundary condition for vertical velocity and its interdependence with surface gas exchange.

Article source: University of Granada.

Image credit: University of Granada

News

Scientists identify mechanism that controls leaf growth and shape

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.


Scientists find great diversity, novel molecules in microbiome of tree roots

Researchers with the Department of Energy’s Oak Ridge National Laboratory have discovered that communities of microbes living in and around poplar tree roots are ten times more diverse than the human microbiome and produce a cornucopia of novel molecules that could be useful as antibiotics, anti-cancer drugs, or for agricultural applications.


In New Phytologist: Plants find ways to survive no matter the terrain

Researchers from Royal Holloway, University of London, together with the University of Osnabrück in Germany, have discovered that a fascinating plant employs two mechanisms to survive, no matter where it grows.