Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


‘Turbocharging’ photosynthesis increases plant biomass

Scientists from the Boyce Thompson Institute (BTI) and Cornell have boosted a carbon-craving enzyme called RuBisCO to turbocharge photosynthesis in corn. The discovery promises to be a key step in improving agricultural efficiency and yield, according to their esearch published in Nature Plants

Increased RuBisCO assists corn’s biological machinery used during photosynthesis to incorporate atmospheric carbon dioxide into carbohydrates.

“Every metabolic process – like photosynthesis – has the equivalent of traffic lights or speed bumps,” said plant biologist David Stern, president of the Cornell-affiliated BTI. “RuBisCO is often the limiting factor in photosynthesis. With increased RuBisCO, though, this well-known speed bump is lowered, leading to improved photosynthetic efficiency.”

RuBisCO does have a formal, scientific name. It’s Ribulose-1,5-bisphosphate carboxylase/oxygenase, an enzyme that helps convert carbon dioxide into sugar. It’s generally accepted, said Stern, that it’s the Earth’s most abundant enzyme.

But for the world of commercial agriculture and corn’s C4 (four-carbon compound) photosynthesis system, RuBisCO works slowly.

BTI researchers found a way to overexpress a key chaperone enzyme called RuBisCO Assembly Factor 1, or RAF1, to help make more RuBisCO.

“It needs help from other proteins to assemble itself,” said lead author Coralie Salesse, a Cornell doctoral candidate in the field of plant biology.

With the chaperone enzyme, the scientists in effect lowered a different speed bump – one that limits the rate at which RuBisCO can attain the right biological architecture – leading the plants to accumulate more of it.

The exact mechanism of how RuBisCO was assembled had been a mystery for many years, until the RAF1 and RAF2 proteins were discovered, said Salesse.

Salesse conducted research at the laboratories of Robert Sharwood and Florian Busch at the Australian National University and at the laboratory of Steven Long, University of Illinois. Salesse found that increasing RuBisCO causes greenhouse-grown plants to flower sooner, grow taller and produce more biomass.

“Corn is an important but land and energy-intensive crop, and reducing its environmental footprint is important. Just in this country, corn is grown on some 90 million acres, and nearly 15 billion bushels were produced in recent years,” said Stern, Cornell adjunct professor of plant biology. He explained there are different approaches to increasing biomass per acre, including boosting photosynthesis, which could increase the weight of each ear of corn and thus yield per acre.

Stern noted – with this finding – that the same approach may have promise to improve yields in other C4 crops, such as sorghum and sugarcane.

“As we move from the greenhouse and into the fields, we hope to eventually observe improved growth and yield in production varieties,” he said. “Turbocharging RuBisCO has the potential to provide a foundation for profound effects on the corn plant’s ability to mature and produce biomass, especially when combined with other approaches.”

Other authors of “Overexpression of Rubisco Subunits With RAF1 Increases Rubisco Content in Maize” are BTI’s Viktoriya Bardal, who was an intern in the Stern laboratory, and Johannes Kromdijk from the University of Illinois.

Read the paper: Nature Plants

Article source: Cornell

Image credit: CCO Public domain

News

Scientists engineer shortcut for photosynthetic glitch, boost crop growth 40%

Plants convert sunlight into energy through photosynthesis; however, most crops on the planet are plagued by a photosynthetic glitch, and to deal with it, evolved an energy-expensive process called photorespiration that drastically suppresses their yield potential. Researchers from the University of Illinois and U.S. Department of Agriculture Agricultural Research Service report in the journal Science that crops engineered with a photorespiratory shortcut are 40 percent more productive in real-world agronomic conditions.


Should researchers engineer a spicy tomato?

The chili pepper, from an evolutionary perspective, is the tomato's long-lost spitfire cousin. They split off from a common ancestor 19 million years ago but still share some of the same DNA. While the tomato plant went on to have a fleshy, nutrient-rich fruit yielding bountiful harvests, the more agriculturally difficult chili plant went defensive, developing capsaicinoids, the molecules that give peppers their spiciness, to ward off predators.


European wheat lacks climate resilience

The climate is not only warming, it is also becoming more variable and extreme. Such unpredictable weather can weaken global food security if major crops such as wheat are not sufficiently resilient – and if we are not properly prepared.