GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

The origin of flower making genes

Flowering plants have evolved from plants without flowers. It is known that the function of several genes, called MADS-box genes, creates shapes peculiar to flowers such as stamens, pistils, and petals. Although plants that do not produce flowers, such as mosses, ferns, and green algae are also known to have the MADS-box genes. However, it was not well understood how the MADS-box genes work in plants without flowers until now. In order to understand the mechanism of flower evolution, it is necessary to understand how the MADS-box genes work in plants without flowers.

A research team led by Professor Mitsuyasu Hasebe of the National Institute for Basic Biology revealed that the MADS-box genes control sperm motility and cell division and elongation of the stem of gametophores, using the moss Physcomitrella patens. Graduate student Shizuka Koshimizu of the research team said, "There are six MADS-box genes in Physcomitrella patens, and we analyzed their functions using moss in which we broke those six genes. In moss which lost the function of all MADS-box genes, sperm flagella hardly moved. Moreover, in the stem, the increase of the length prevented water supply to the tip, in which sperm swim for fertilization. The MADS-box genes are critical for fertilization in two ways: providing enough water for sperm swimming and producing movable flagella."

Professor Hasebe said, "Both the gametophore and sperm flagella have been lost in the process of evolution as the flowering plants adapted to the dry environment on land. Based on this, it is likely that the MADS-box genes that worked in the gametophore and sperm flagella became unnecessary, and that the flower might have evolved by reusing them for other functions. It is interesting that genetic regulatory networks of development are different between different lineages in plants, although they are relatively conserved in animals"

Read the paper: Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.

Article source: National Institutes of Natural Sciences.

Image credit: Koshimizu & Hasebe


Wetlands are key for accurate greenhouse gas measurements in the Arctic

The Arctic is rapidly warming, with stronger effects than observed elsewhere in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C). Warming of Arctic soils and thawing of permafrost can have substantial consequences for the global climate, as the large C stored in soils could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming.

New approach to conserving tree species

Globally, forest trees are increasingly at risk from habitat destruction, pests and disease, and a changing climate. But the guidelines for effective preservation of a tree species' genetic diversity and adaptive potential have been limited to simple mathematical equations for crop collections from the 1970s, or best guesses based on intuitions.

Multidisciplinary team tackles agricultural threat to global food security

CLEMSON, South Carolina – Weak corn and sorghum stalks cause the loss of about 20 percent of the crops in the U.S. annually, and Rajan Sekhon and Christopher McMahan of Clemson University's College of Science are part of a multi-university consortium trying to find out why.