Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


The highly complex sugarcane genome has finally been sequenced

CIRAD and its partners* had to use cunning to establish the first sugarcane reference sequence. The plant's genome is so complex that conventional sequencing techniques had proved useless. This meant that sugarcane was the last major cultivated plant to have its genome sequenced.

A novel sequencing method

The team took up the gauntlet using a nifty approach based on a discovery made at CIRAD some 20 years previously: the genome structures of sugarcane and sorghum are very similar. The term used for this is "colinearity", which means that there is a degree of parallelism, with numerous genes occurring in the same order. Olivier Garsmeur, a CIRAD researcher and lead author of the study, was thus able to use the sorghum genome as a template to assemble and select the sugarcane chromosome fragments to sequence. "Thanks to this novel method, the reference sequence obtained for a cultivar from Réunion, R570, is very good quality", says Angélique D'Hont, a CIRAD geneticist who coordinated the study.

A key stage in investigating the genome

That reference sequence is a vital step towards fully sequencing the sugarcane genome and analysing the variations between the various sugarcane varieties more effectively. Angélique D'Hont had the same experience with the banana genome in 2012. As she says, "having a reference sequence for a species radically changes all the genomic and more broadly genetic approaches for that species".

A new era for sugarcane breeding

As with all other cultivated plants before it, sugarcane breeding will now be able to enter the age of molecular biology. Until now, for want of a reference sequence, sugarcane cultivar breeding programmes were restricted to hybridization, followed by conventional, very cumbersome field assessments. Molecular screening techniques can now be developed to supplement field trials. This is a major breakthrough, since almost 80% of the world's sugar comes from sugarcane. Moreover, the plant has also recently become a frontrunner in the race to produce biomass. This new genetic knowledge will serve to create new varieties for a wider range of uses.

Sugarcane, a complex genome

The sugarcane genome is complex for several reasons:

  • high polyploidy (large number of copies of each chromosome category)
  • aneuploidy (variable number of copies depending on the chromosome category)
  • bispecific origin of the chromosomes
  • structural differences and interspecific chromosome recombinants.

Read the paper: A mosaic monoploid reference sequence for the highly complex genome of sugarcane.

Article source: CIRAD.

Image credit: R. Carayol

News

Hot temperatures can trigger an RNA response in plants

The stress of hotter temperatures may trigger a response in a plant's RNA, or ribonucleic acid — part of a cell's genetic messaging system — to help manage this change in its environment, according to a team of Penn State researchers.


Study provides whole-system view of plant cold stress

When temperatures drop, plants can’t bundle up. Stuck outside, exposed, plants instead undergo a series of biochemical changes that protect cells from damage. Scientists have described these changes and identified some of the genes controlling them, but it’s not clear how all the processes work together. Lacking this global view, plant breeders have struggled to engineer cold-tolerant crops.


Photosynthesis Like a Moss

Moss evolved after algae but before vascular land plants, such as ferns and trees, making them an interesting target for scientists studying photosynthesis, the process by which plants convert sunlight to fuel. Now researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have made a discovery that could shed light on how plants evolved to move from the ocean to land.