GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Study finds no-tillage not sufficient alone to prevent water pollution from nitrate

A new IUPUI study funded by the U.S. Department of Agriculture answers a long-debated agricultural question: whether no-tillage alone is sufficient to prevent water pollution from nitrate. The answer is no.

Researchers in the Department of Earth Sciences in the School of Science at IUPUI conducted a meta-analysis to compare runoff and leaching of nitrate from no-till and conventional tillage agricultural fields. Surface runoff and leaching are two major transportation pathways for nitrate to reach and pollute water.

Due to its mobility and water solubility, nitrate has long been recognized as a widespread water pollutant.

"What we found is that no-till is not sufficient to improve water quality," said Lixin Wang, an assistant professor and corresponding author of the paper. "In fact, we found that no-till increased nitrogen leaching."

The study suggests that no-till needs to be complemented with other techniques, such as cover cropping and intercropping or rotation with perennial crops, to improve nitrate retention and water-quality benefits.

After studying concentration of nitrate -- nitrate amount per water volume unit -- and nitrate load, or total amount of nitrate, researchers found surface runoff from no-till fields to contain a similar nitrate load to surface runoff from conventional tillage fields.

In contrast, nitrate load via leaching was greater with no-till fields than with conventional tillage fields.

No-till leaves crop residue on the soil surface and limits soil disturbance except for small slits to add fertilizer. An estimated 20 percent of all croplands in the U.S. are under no-till management. It reduces soil erosion by avoiding tilling year after year, which leads to soil getting washed away into lakes and rivers. Because reducing soil loss reduces nutrient loss, it was assumed that no-till would reduce water pollution, Wang said.

"Overall, we found the adoption of no-till resulted in increased nitrate loss via leaching due to the frequent occurrence of macropores, such as those created by dead roots and earthworm burrows, in soils that have been under long-range no-tillage management," Wang said.

Researchers examined how nitrate loss through surface runoff and leaching were impacted by other factors, including aridity, rainfall variability, soil texture, crop species, duration of tillage and fertilizer type.

Read the paper: Impacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: A meta-analysis.

Article source: Indiana University.


Flood, drought and disease tolerant -- one gene to rule them all

An international collaboration between researchers at the University of Copenhagen, Nagoya University and the University of Western Australia has resulted in a breakthrough in plant biology. Since 2014, the researchers have worked on identifying the genetic background for the improved flood tolerance observed in rice, wheat and several natural wetland plants. In a New Phytologist, article, the researchers describe the discovery of a single gene that controls the surface properties of rice, rendering the leaves superhydrophobic.

Plants overcome hunger with the aid of autophagy

Researchers at Tohoku University have found that plants activate autophagy in their leaf cells to derive amino acids that are used for survival under energy-starved "hunger" conditions. The findings show that amino acid utilization in plants can be controlled by the manipulation of autophagy.

The Alps are home to more than 3,000 lichens

Historically, the Alps have always played an emblematic role, being one of the largest continuous natural areas in Europe. With its numerous habitats, the mountain system is easily one of the richest biodiversity hotspots in Europe.