Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Sex in plants requires thrust

Plant sex relies on a combination of prodding and a lot of communication and guidance suggests a study published in a issue of Technology.

It’s a process that is fraught with challenges. The sperm, two of which are housed in each grain of pollen, are unable to move on their own and the egg cell is deeply embedded in the pistil (the female tissues of the flower). So, to reach the egg the sperm rely on a pollen tube that extends into the pistil. These invasive tubes are the fastest growing cells in the plant kingdom, growing up to 1-2 cm (or 500x their original dimension) an hour, and can sometimes extend up to 30 cm, depending on the anatomy of the flower. To fertilize the egg, the pollen tube (which is between 1/20 and 1/5 of the width of a human hair) has to navigate through a maze of tissue, no matter what obstacles it encounters. The phenomenon is well-documented and known to require communication at cellular level with the female flower tissues, but relatively little is understood about the cell mechanics involved. So scientists from McGill and Concordia collaborated to look more closely at the growth force of individual pollen tubes using a microfluidic lab-on-a-chip.

“From a mechanical point of view, the process of pollen tube elongation is similar to that of a balloon catheter used in angioplasty – forces are generated based on fluid under pressure,” explains Muthukumaran Packirisamy from Concordia Univertisy ’s Department of Mechanical and Industrial Engineering. “So, we designed a microscopic cantilever with a gauge built-in that the pollen tubes had to forcefully push against in order to continue to elongate.”

Anja Geitmann, formerly at l’Université de Montréal who is now Canada Research Chair in McGill’s Department of Plant Science is the senior author on the paper. She adds:

“Thanks to the lab-on-a chip technology we were able to actually see and measure exactly what was going on within the pollen tube as it grew. We discovered that the water pressure and force that these tiny cells exert as they push through the plant tissue to reach their destination is equivalent to the air pressure we put in our car tires to keep them rolling. What is even more exciting is that we found that when the pollen tube encounters an obstacle, it changes its growth pattern, suggesting that the cells are in some ways able to ‘feel’ and respond to the physical resistance in their environment. It’s very exciting to be able to see this process, and it leaves us with a lot of interesting questions ahead about male-female communication.”

Read the paper: Technology

Article source: McGill University

Image credit: McGill University

News

Scientists identify mechanism that controls leaf growth and shape

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.


Scientists find great diversity, novel molecules in microbiome of tree roots

Researchers with the Department of Energy’s Oak Ridge National Laboratory have discovered that communities of microbes living in and around poplar tree roots are ten times more diverse than the human microbiome and produce a cornucopia of novel molecules that could be useful as antibiotics, anti-cancer drugs, or for agricultural applications.


In New Phytologist: Plants find ways to survive no matter the terrain

Researchers from Royal Holloway, University of London, together with the University of Osnabrück in Germany, have discovered that a fascinating plant employs two mechanisms to survive, no matter where it grows.