Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Seeing the light: Scientists unlock seed germination process

Scientists have identified a key gene that helps seeds decide whether to germinate.

The MFT gene stops seeds germinating in the dark or under shady conditions, where their chances of survival would be poor, according to new research from the University of York.

The study, conducted on Arabidopsis, a very close relative of oilseed rape, increases our understanding of one of the most important stages in the life cycle of a plant and may help to improve the seed quality of agricultural crops in the future.

Scientists have known for some time that two plant hormones play an important role in regulating if and when a seed will germinate -- "Abscisic Acid" or ABA blocks germination and "Gibberelins" or GA promotes it.

However, in a breakthrough in our understanding of the mechanism by which these hormones control germination in response to light quality, the researchers have discovered that MFT is the key component that integrates and interprets signals coming from both ABA and GA.

The MFT gene is regulated by light quality and receives signals from both ABA and GA. In dark or shady conditions, it then directs the production of the MFT protein, which regulates germination by switching on a block of genes that prevent growth and switching off another block of genes that promote growth.

This prevents a plant from germinating under the wrong conditions such as when there is not enough light to grow.

Professor Ian Graham, corresponding author, from the Centre for Novel Agricultural Products in the Department of Biology at the University of York, said: "This is another great example of how plants have evolved very sophisticated molecular mechanisms to stay in tune with their environment. This allows seeds to survive in the soil for many years so that when the time is right, such as when a tree falls in a forest or soil is turned over, seeds can suddenly spring into action."

For many plant species the ability of a seed to sense the quality of light can inform it if it is located in direct sunlight, under a canopy of other plants that only allow a certain quality of light to pass through or in the dark, which is often the case when seeds are buried in the soil.

In wild plant species the ability for seeds to remain dormant even under conditions that would allow them to germinate is important for survival. For crops species, eliminating this dormancy is one of the first traits that has to be dealt with in a plant breeding programme.

Lead author of the work, Dr Fabian Vaistij, from the Department of Biology at the University of York added: "Understanding the molecular genetic basis of how seed germination is controlled will provide new tools to improve seed quality and seedling vigour in developing new crops for the future."

Read the paper: MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana.

Article source: University of York.

Image credit: Vasiliy Koval / Fotolia

News

Scientists identify mechanism that controls leaf growth and shape

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.


Scientists find great diversity, novel molecules in microbiome of tree roots

Researchers with the Department of Energy’s Oak Ridge National Laboratory have discovered that communities of microbes living in and around poplar tree roots are ten times more diverse than the human microbiome and produce a cornucopia of novel molecules that could be useful as antibiotics, anti-cancer drugs, or for agricultural applications.


In New Phytologist: Plants find ways to survive no matter the terrain

Researchers from Royal Holloway, University of London, together with the University of Osnabrück in Germany, have discovered that a fascinating plant employs two mechanisms to survive, no matter where it grows.