Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Seagrass biodiversity is both a goal and a means for restoration

Coral reefs, seagrass meadows and mangrove forests work together to make the Coral Triangle of Indonesia a hotspot for marine biodiversity. The system supports valuable fisheries and endangered species and helps protect shorelines. But it is in global decline due to threats from coastal development, destructive fishing practices and climate change.

A UC Davis study published recently in the journal Proceedings of the National Academy of Sciences found that in the case of seagrasses, biodiversity is not only a goal, but also a means for restoration of this important ecosystem.

The Coral Triangle is home to about 15 species of seagrasses, more than almost anywhere else on Earth. Previous seagrass restoration efforts have primarily focused on a single species.

For this study, the scientists transplanted six common seagrass species at four species-richness levels: monocultures, two, four, and five species. They analyzed how well the initial transplants survived and their rate of expansion or contraction for more than a year. The results showed that planting mixtures of diverse seagrass species improved their overall survival and growth.

"Seagrass beds are important habitats for fisheries species, for protecting shorelines from storm damage, and they provide livelihoods for many millions of humans around the world," said Susan Williams, a professor in the UC Davis Department of Evolution and Ecology and the UC Davis Bodega Marine Laboratory. "Seagrass habitat is being lost at a rate of a football field's area every half-hour, which threatens these important functions. We demonstrated we could improve seagrass restoration success by planting a mix of species, and not just a single species, which has been the common restoration practice in warm regions such as Florida, Texas, and also in Indonesia, where we performed the experiment."

Read the paper: Species richness accelerates marine ecosystem restoration in the Coral Triangle.

Article source: UC Davis.

Image credit: Christine Sur/UC Davis

News

New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.


Europe's lost forests: Coverage has halved over 6,000 years

More than half of Europe's forests have disappeared over the past 6,000 years thanks to increasing demand for agricultural land and the use of wood as a source of fuel, new research led by the University of Plymouth suggests.


The circadian clock sets the pace of plant growth

The recent award of the Nobel Prize in Physiology or Medicine to the three American researchers Hall, Rosbash and Young for their "discoveries of molecular mechanisms controlling the circadian rhythm" has greatly popularized this term -which comes from the Latin words "circa" (around of) and "die" (day)-. Thanks to the discoveries that these scientists did using the fruit fly, today we know that the organisms have an internal clock built of a set of cellular proteins whose amount oscillates in periods of 24 hours. These oscillations, which are autonomously maintained, explain how living organisms adapt their biological rhythm so that it is synchronized with the Earth's revolutions.