Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Scientists unlock planthoppers' role in rice stripe virus reproduction

Recently, researchers from the Institute of Zoology of the Chinese Academy of Sciences have discovered how a severe rice virus reproduces inside the small brown planthopper, a major carrier of the virus, and have published this work in eLIFE.

Rice stripe virus (RSV) causes major damage to rice crops each year. The study could inform future strategies for controlling the spread of this and other viruses that can lead to devastating effects on rice, wheat, cotton and other crops.

"Most plant viruses depend on insects to carry them between plants, and many plant viruses can reproduce inside the cells of these carrier insects, or 'vectors', without actually harming them," said CUI Feng, a professor of zoology.

"RSV, one of the most notorious plant viruses, is carried by the small brown planthopper and, once inside the cells, manages to achieve a balance with the insect's immune system."

Viral infections in animal hosts activate a pathway by which a type of enzyme, called c-Jun N-terminal kinase (JNK), is signalled to respond. But how exactly viruses regulate this pathway in vectors remains an open question and CUI said the answer would provide important clues for intervening in the spread of plant viruses.

To address this question, CUI and her team explored the effect of RSV on the JNK signalling pathway in the small brown planthopper. By protein-protein interaction and gene expression interference assays, they found that the virus activates the pathway in various ways, but especially through the interaction of a planthopper protein called G protein pathway suppressor 2 (GPS2), and a viral protein called capsid protein.

"The interaction between these two proteins promotes RSV reproduction inside the planthopper, ultimately leading to disease outbreak when the insect carries the virus among rice crops," says WANG Wei, a postdoctoral researcher.

"We discovered that RSV infection increased the level of another protein called Tumor Necrosis Factor-α (TNF-α) and decreased the level of GPS2 in the insect vector. The virus capsid, which stores all of RSV's genetic material, competitively binds GPS2 to stop it from inhibiting the JNK activation machinery. JNK activation then promotes RSV replication in the vector, while inhibiting this pathway causes a significant reduction in virus production, therefore delaying disease outbreak in plants."

The findings suggest that inhibiting the JNK pathway, either by lowering JNK expression, strengthening interactions with GPS2 or weakening the effects of TNF-a, could be beneficial for rice agriculture.

"Such inhibition could be achieved through breeding or other means of genetic modification," WANG said. "In some cases, it could be possible to administer the appropriate chemical compounds to rice plants to reduce the spread of RSV."

Read the paper: The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication.

Article source: Chinese Academy of Sciences.

Image credit: IOZ

News

Shallow soils promote savannas in South America

New research suggests that the boundary between South American tropical rainforests and savannas is influenced by the depth to which plants can root. Shallow rooting depth promotes the establishment of savannas. Previous research has shown that precipitation and fire mediate tropical forest and savanna distributions. The study shows that below ground conditions need to be considered to understand the distribution of terrestrial vegetation both historically and in the face of future climate change. The study by researchers of the Senckenberg Biodiversity and Climate Research Centre and Goethe University is based on computer vegetation models and was published in the Journal of Biogeography.


Living mulch builds profits and soil

Living mulch functions like mulch on any farm or garden except -- it's alive. No, it's not out of the latest horror movie; living mulch is a system farmers can use to benefit both profits and the soil. While the system has been around for a while, scientists at the University of Georgia are making it more efficient and sustainable.


Sequencing of stevia plant genome revealed for first time by Purecircle Stevia Institute

For the first time, scientists have completed the sequencing of the stevia plant genome. Lead scientists from PureCircle Stevia Institute and KeyGene have unveiled this major breakthrough in research showing the annotated, high-quality genome sequences of three stevia cultivars.