Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Scientists suggest way to predict the behavior of invasive weeds

Is it possible to predict which nonnative plant species will become invasive weeds and when? According to research featured in the journal Invasive Plant Science and Management, the answer is "hopefully yes." And those predictions can lead to more effective and cost-efficient weed management.

Researchers say invasive species generally follow a three-phase development curve - from lag to expansion to plateau. The length and rapidity of the expansion phase varies across species and determines how aggressively a plant spreads.

"Understanding the source of this variation can help us predict which nonnative species become invasive," says Pedro M. Antunes, who co-authored of the paper with Dr. Brandon Schamp, both of Algoma University in Ontario, Canada. "The key is to take a best practices-based approach to gathering and comparing data about past invaders, their traits and preferred habitats."

Examples of the best practices the research team recommends:

  • Use herbarium records collected by universities, museums and governmental organizations as a data source for invasion curves. They provide some of the most comprehensive plant distribution information available - some dating back to the 1700s.
  • Verify the accuracy of the records and confirm the origin and taxonomic status of each specimen using international Food and Agriculture Organization criteria.
  • Account for phylogenetic relatedness by creating a "family tree" that shows the linkages among various plants.
  • Systematically collect new data annually from 10x10 km quadrats to evaluate abundance of nonnative species.
  • Compare invasion curves to determine which traits are linked to more aggressive growth and expansion.

"As our knowledge increases, we can make better-informed predictions about the likelihood of particular species becoming invasive and the timeline they will travel as they do so," Antunes says. "We then can take advantage of the lag time before the plant population expands to intervene with appropriate management controls."

Read the paper: Constructing Standard Invasion Curves from Herbarium Data—Toward Increased Predictability of Plant Invasions.

Article source: Cambridge University Press.

Image credit: Invasive Plant Science volume 10 issue 4 front cover

News

A small number of crops are dominating globally. And that’s bad news for sustainable agriculture

A new University of Toronto study suggests that globally we're growing more of the same kinds of crops, and this presents major challenges for agricultural sustainability on a global scale.


How plants cope with iron deficiency

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health. Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly. Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant's iron requirements vary throughout its development depending on external circumstances.


Biotechnology to the rescue of Brussels sprouts

An international team has identified the genes that make these plants resistant to the pathogen that attacks crops belonging to the cabbage family all over the world.