Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Research finds roots use chemical 'photos' to coordinate growth

Though it may look haphazard, the network of intertwining plant roots snaking through the soil actually represents a deliberate process. Root growth is guided by chemical snapshots taken by the young roots, allowing them to detect obstructions and coordinate the paths they take, new research led by Florida Institute of Technology finds.

Roots compete for and share resources with neighboring roots, as well as with billions of microbes. Until now, however, little has been known about how plants coordinate construction of these complex subterranean assemblies.

The new paper, published in PLOS ONE, is based on collaborative research by scientists at Florida Tech, Emory University and the University of Richmond. It answers some of the fundamental questions about how plants coordinate their growth and development in the soil.

And because the same reactions at work in root growth are also used by plants to fight off infections, these findings could significantly improve our understanding of plant immunity and lead to substantial boosts in crop yields.

"It turns out that plants use chemistry to create a highly accurate map of the road ahead for a particular root -- the same chemistry that people once employed to develop black-and-white photos," said Andrew Palmer, an assistant professor of biological sciences at Florida Tech and leader of the university's research team.

Specifically, compounds known as quinones are found in both traditional photography and in the roots of plants. These compounds are crucial to the development of black and white photos because they increase the amount of silver particles deposited on photo paper creating a clear image through a process known as oxidation.

And according to the new research, these quinones are generated when a young root grows close to a more mature one. The production of these compounds would then be amplified in a process similar to developing photographs, providing a 'picture' of the nearby root.

Working with the model plant Arabidopsis thaliana, undergraduate researchers Alexandra Fuller and Phoebe Young at Emory, and Jamie Kitson-Finuff and Karl Schneider at Florida Tech confirmed the presence of a powerful oxidant at the growing tips of the roots. This oxidant reacts with materials on the surface of a mature root to produce the quinones. These compounds in turn stimulate more oxidant production, creating an enhanced signal -- like a snapshot -- focused right in front of the young root, alerting it to the mature root and the plant to which it belongs. Florida Tech graduate students Stephen Lazar and Purvi Jain showed that the hydroquinone-like compounds suppress elongation of the young roots, and thus may help newly-growing roots avoid obstacles or competition.

"In a field full of growing plants, there is no central-planning office. Plants have to avoid collisions on a case-by-case basis, and we are finally uncovering the strategies that make it possible," Palmer said. "Perhaps even more important, plants may be using this same chemical process to get a snapshot of potential infections."

Read the paper: Redox-mediated Quorum Sensing in Plants.

Article source: Florida Institute of Technology.

Image credit: Florida Institute of Technology

News

New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.


Europe's lost forests: Coverage has halved over 6,000 years

More than half of Europe's forests have disappeared over the past 6,000 years thanks to increasing demand for agricultural land and the use of wood as a source of fuel, new research led by the University of Plymouth suggests.


The circadian clock sets the pace of plant growth

The recent award of the Nobel Prize in Physiology or Medicine to the three American researchers Hall, Rosbash and Young for their "discoveries of molecular mechanisms controlling the circadian rhythm" has greatly popularized this term -which comes from the Latin words "circa" (around of) and "die" (day)-. Thanks to the discoveries that these scientists did using the fruit fly, today we know that the organisms have an internal clock built of a set of cellular proteins whose amount oscillates in periods of 24 hours. These oscillations, which are autonomously maintained, explain how living organisms adapt their biological rhythm so that it is synchronized with the Earth's revolutions.