Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Quantifying the greenhouse gas footprint of crop cultivation

"Climate-smart" crop cultivation, characterized by a low greenhouse gas (GHG) footprint, low synthetic nitrogen consumption, and simultaneously high yields, is an approach in agriculture for implementing the Paris Agreement as part of mitigating climate change. The GHG footprint is an index used to indicate the climate change impact potential exerted by crop production. It is therefore crucial to accurately quantify the GHG footprints of crop cultivation systems. However, severe problems or drawbacks in the quantification of GHG footprints still exist, which has limited the applicability of the GHG footprint in crop cultivation.

To solve these problems or drawbacks, in a recently published study in Atmospheric and Oceanic Science Letters, Prof. ZHENG Xunhua and her coauthor from the Institute of Atmospheric Physics, Chinese Academy of Sciences, proposed a generic methodological framework to quantify the GHG footprints of crop cultivation systems free from grazing.

"The current framework can more completely take into account the direct/indirect contributors in quantifying the GHG emissions and/or uptakes within a crop-production life cycle. In addition, it provides example values of some GHG emission factors while emphasizing the combination of direct measurements and model simulations in determining other key parameters," explains ZHENG. "And we hope that this methodological framework can support different studies to obtain comparable values of GHG footprints, which may be the key parameters for determining the green value added tax of foods in implementing the Paris Agreement."

Read the paper: A generic methodological framework for accurately quantifying greenhouse gas footprints of crop cultivation systems.

Article source: Institute of Atmospheric Physics, Chinese Academy of Sciences.

Image credit: ZHENG Xunhua

News

Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.


How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.


VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.