Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Quantifying the greenhouse gas footprint of crop cultivation

"Climate-smart" crop cultivation, characterized by a low greenhouse gas (GHG) footprint, low synthetic nitrogen consumption, and simultaneously high yields, is an approach in agriculture for implementing the Paris Agreement as part of mitigating climate change. The GHG footprint is an index used to indicate the climate change impact potential exerted by crop production. It is therefore crucial to accurately quantify the GHG footprints of crop cultivation systems. However, severe problems or drawbacks in the quantification of GHG footprints still exist, which has limited the applicability of the GHG footprint in crop cultivation.

To solve these problems or drawbacks, in a recently published study in Atmospheric and Oceanic Science Letters, Prof. ZHENG Xunhua and her coauthor from the Institute of Atmospheric Physics, Chinese Academy of Sciences, proposed a generic methodological framework to quantify the GHG footprints of crop cultivation systems free from grazing.

"The current framework can more completely take into account the direct/indirect contributors in quantifying the GHG emissions and/or uptakes within a crop-production life cycle. In addition, it provides example values of some GHG emission factors while emphasizing the combination of direct measurements and model simulations in determining other key parameters," explains ZHENG. "And we hope that this methodological framework can support different studies to obtain comparable values of GHG footprints, which may be the key parameters for determining the green value added tax of foods in implementing the Paris Agreement."

Read the paper: A generic methodological framework for accurately quantifying greenhouse gas footprints of crop cultivation systems.

Article source: Institute of Atmospheric Physics, Chinese Academy of Sciences.

Image credit: ZHENG Xunhua

News

New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.


Europe's lost forests: Coverage has halved over 6,000 years

More than half of Europe's forests have disappeared over the past 6,000 years thanks to increasing demand for agricultural land and the use of wood as a source of fuel, new research led by the University of Plymouth suggests.


The circadian clock sets the pace of plant growth

The recent award of the Nobel Prize in Physiology or Medicine to the three American researchers Hall, Rosbash and Young for their "discoveries of molecular mechanisms controlling the circadian rhythm" has greatly popularized this term -which comes from the Latin words "circa" (around of) and "die" (day)-. Thanks to the discoveries that these scientists did using the fruit fly, today we know that the organisms have an internal clock built of a set of cellular proteins whose amount oscillates in periods of 24 hours. These oscillations, which are autonomously maintained, explain how living organisms adapt their biological rhythm so that it is synchronized with the Earth's revolutions.