GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Predicting the effect of climate change on crop yields

Scientists now have a new tool to predict the future effects of climate change on crop yields.

Researchers from University of Illinois are attempting to bridge two types of computational crop models to become more reliable predictors of crop production in the U.S. Corn Belt.

"One class of crop models is agronomy-based and the other is embedded in climate models or earth system models. They are developed for different purposes and applied at different scales," says Kaiyu Guan, an environmental scientist at the University of Illinois and the principal investigator on the research. "Because each has its own strengths and weaknesses, our simple idea is to combine the strengths of both types of models to make a new crop model with improved prediction performance."

Guan and his research team implemented and evaluated a new maize growth model, represented as the CLM-APSIM model, by combining superior features in both Community Land Model (CLM) and Agricultural Production Systems sIMulator (APSIM).

"The original maize model in CLM only has three phenological stages, or life cycles. Some important developmental stages such as flowering are missing, making it impossible to apply some critical stresses, such as water stress or high temperature at these specific developmental stages," says Bin Peng, a postdoctoral researcher in Guan's lab and also the lead author. "Our solution is incorporating the life cycle development scheme of APSIM, which has 12 stages, into the CLM model. Through this integration, stresses induced by high temperature, soil water and nitrogen deficits, can be taken into account in the new model."

Peng says they chose CLM as the hosting framework to implement the new model because it is more process-based and can be coupled with climate models.

"This is important as the new tool can be used to investigate the two-way feedback between an agroecosystem and a climate system in our future studies."

In addition to replacing the original maize phenology model in CLM with that from the APSIM model, the researchers have made several other innovative improvements in the new model. A new carbon allocation scheme and a grain number simulation scheme were added, as well as a refinement to the original canopy structure scheme.

"The most alluring improvement is that our new model is closer to getting the right yield with the right mechanism," says Guan. "The original CLM model underestimates above-ground biomass but overestimates the harvest index of maize, leading to apparent right-yield simulation with the wrong mechanism. Our new model corrected this deficiency in the original CLM model."

Peng adds that the phenology scheme of APSIM is quite generic. "We can easily extend our new model to simulate the growth processes of other staple crops, such as soybeans and wheat. This is definitely in our plan and we are already working on it.

"All the work was conducted on Blue Waters, a powerful petascale supercomputer at the National Center for Supercomputing Applications (NCSA) on the University of Illinois campus," says Peng. "We are currently working on parameter sensitivity analysis and Bayesian calibration of this new model and also on a high resolution regional simulation over the U.S. Corn Belt, all of which would not be possible without the precious computational resources provided by Blue Waters."

Read the paper: Improving maize growth processes in the community land model: Implementation and evaluation.

Article source: University of Illinois.


Forty years of data quantifies benefits of Bt corn adoption across multiple crops for the first time

University of Maryland researchers have pulled together forty years of data to quantify the effects of Bt field corn, a highly marketed and successful genetically engineered technology, in a novel and large-scale collaborative study. Other studies have demonstrated the benefits of Bt corn or cotton adoption on pest management for pests like the European corn borer or cotton bollworm in corn or cotton itself, but this is the first study to look at the effects on other offsite crops in North America. By tracking European corn borer populations, this study shows significant decreases in adult moth activity, recommended spraying regimens, and overall crop damage in vegetable crops such as sweet corn, peppers, and green beans. These benefits have never before been documented and showcase Bt crops as a powerful tool to reduce pest populations regionally thereby benefitting other crops in the agricultural landscape.

A lesson from Darwin on marine ecosystems

When British naturalist Charles Darwin traveled to the Galapagos Islands in 1835, he took notice of the giant kelp forests ringing the islands. He believed that if those forests were destroyed, a significant number of species would be lost. These underwater ecosystems, Darwin believed, could be even more important than forests on land.

Climate change risk for half of plant and animal species in biodiversity hotspots

Up to half of plant and animal species in the world's most naturally rich areas, such as the Amazon and the Galapagos, could face local extinction by the turn of the century due to climate change if carbon emissions continue to rise unchecked.