Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Predicting how native plants return to abandoned farm fields

Movement is one of the most common processes in all biology—mice forage for food and geese migrate with the seasons. While plants may be rooted in one spot for most of their lives, movement also plays a key role in their ecology—especially when it comes to seeds.

Tracking how seeds move—or disperse—can be difficult because of a seed’s small size. However, in a study published in Ecology, researchers at the University of Minnesota’s College of Biological Sciences found a solution for tracking seed movement by using electrical engineering and mathematical models.

“We created a device that measures seed terminal velocity,” said Adam Clark, a study co-author and former graduate student at the University of Minnesota. “In this case, terminal velocity describes the maximum speed at which a seed can travel through the air. If we combine this information with other data such as plant height and local wind conditions, we are able to approximate just how far these seeds can travel.”

Researchers specifically collected this data for 50 prairie plant species—including big bluestem, rough blazing star and lupine—at the Cedar Creek Ecosystem Science Reserve, a biological field station north of Minneapolis-Saint Paul in Anoka County. The researchers then used that data to examine how natural plant communities recover after agricultural fields are abandoned, based on surveys that cover almost 90 years of changes at Cedar Creek across 23 fields.

As a result of this study, researchers found their estimates of dispersal ability were able to correctly predict the likelihood of colonization, as well as the spatial establishment patterns of many species across these abandoned fields.

“Understanding how seeds move is critical to understanding how plants escape plant-eating animals, find favorable environments away from competition or track changing climates,” said Lauren Sullivan, a postdoctoral researcher at the University of Minnesota and the study's lead author.

This method of tracking seed dispersal will allow other researchers to measure dispersal and develop predictions about the importance of plant movement for other commonly studied ecological processes, such as competition, establishment, succession and recovery from disturbance.

Read the paper: Ecology

Article source: University of Minnesota

Image credit: CCO Public domain

News

Nature's 'laboratory' offers clues on how plants thrive through genetic diversity

Scientists have turned to nature’s own ‘laboratory’ for clues about how plants adapt in the environment to ensure their own survival.


Global warming increases frost damage on trees in Central Europe

Global warming increases frost damage on trees in large areas of Central Europe, according to a new Finnish-Chinese study by researchers from the University of Eastern Finland, the Chinese Academy of Science and Zhejiang A&F University.


The African Orphan Crops Consortium bears its first fruits

New research published describes and releases the first five orphan crop genomes from an international project to boost the productivity of traditional African food supplies.