Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Plants 'hedge their bets' in germination: The route to better crop yields

Researchers at the University of Birmingham have revealed how plants 'hedge their bets' by getting their seeds to germinate at different times. Their work identifies routes to reduce variability in agriculture and produce more consistent outcomes for farmers and food production, according to research published in the Journal of The Royal Society Interface.

These findings identify the origin of a 'gambling' approach to germination in Arabidopsis thaliana, more commonly known as thale cress.

Seeds from the same plant germinate at different times to hedge against environmental challenges that plants have faced through history. This variability is bad news for agriculture, where farmers want uniform fields of crops.

Stochasticity, the random nature of biochemical processes, is an unavoidable feature underlying cell biology, and some organisms - including plants - have evolved ways to harness this randomness. By identifying and analysing a circuit in plant cells that 'rolls the dice' - generating a degree of randomness in a hormone that controls germination - and revealing ways to reduce this variability, the researchers hope to provide the foundations for work that will be able to persuade plants to germinate more uniformly.

Such an advance would allow farmers to increase their potential yields, posing a possible solution to agronomic and food security challenges.

With hormone levels being incredibly difficult to observe in real-time in plant embryos, the team turned to mathematical modelling to predict how biological processes will unfold.

Dr Iain Johnston, from the School of Biosciences at the University of Birmingham, said: 'It's really this interface of biology with maths that lets us understand and predict the processes generating variability in plant cells.'

Co-author Professor George Bassel, also of the School of Biosciences at the University of Birmingham, added: 'Our identification of this variability-generating circuit provides the opportunity to synchronise and enhance future agricultural production.'

Read the paper: Identification of a bet-hedging network motif generating noise in hormone concentrations and germination propensity in Arabidopsis.

Article source: University of Birmingham.

Image credit: Iain Johnston

News

Wetlands are key for accurate greenhouse gas measurements in the Arctic

The Arctic is rapidly warming, with stronger effects than observed elsewhere in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C). Warming of Arctic soils and thawing of permafrost can have substantial consequences for the global climate, as the large C stored in soils could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming.


New approach to conserving tree species

Globally, forest trees are increasingly at risk from habitat destruction, pests and disease, and a changing climate. But the guidelines for effective preservation of a tree species' genetic diversity and adaptive potential have been limited to simple mathematical equations for crop collections from the 1970s, or best guesses based on intuitions.


Multidisciplinary team tackles agricultural threat to global food security

CLEMSON, South Carolina – Weak corn and sorghum stalks cause the loss of about 20 percent of the crops in the U.S. annually, and Rajan Sekhon and Christopher McMahan of Clemson University's College of Science are part of a multi-university consortium trying to find out why.