GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Plants get a brace to precisely shed flowers and leaves

Spring. As a delicate wind blows, pink cherry blossom petals leave branches by flying in the air. It sounds like the setting of a romantic movie, but it is actually the research topic of a team at Daegu Gyeongbuk Institute of Science and Technology (DGIST) and the Institute for Basic Science (IBS). The team is keen on studying this as the mechanism of such process is far from clear. Spoiling the magic, each of the falling petals leaves behind a little open cut, which might be prone to infection. The same happens when plants shed leaves, fruits, and seeds. Researchers at the Department of New Biology at DGIST and the Center for Plant Aging Research within IBS, have just reported in Cell how plants regulate the detachment process and protect themselves. As shedding is closely associated with a plants' life cycle, this is a topic of substantial interest to improve crop and fruit production.

In order for leaves, flowers and fruits to drop, specific proteins, known as cell wall processing enzymes, need to precisely act to degrade the cell wall between the cells, facilitating the cell-to-cell detachment. Similar to a plant wound, the opening must be quickly re-sealed to avoid access of bacteria and harmful substances, but in comparison to a wound, the team found out that plants use a different mechanism to seal the opening.

The detachment spot (abscission zone) was found to consist of two neighboring cell types: residuum cells (RECs) remaining on the plant and secession cells (SECs) in flowers, leaves, etc. "The separation must be precise and minimal as the process transiently increases vulnerability to environmental peril," explains June M. Kwak, leading author of the study.

DGIST and IBS researchers used the classic plant model, Arabidopsis thaliana, to investigate how plants overcome the physical constraint of cell walls, and accomplish organ abscission. The two cell types in the abscission zone display different cellular activities and architectures. In particular, SECs form two to three layers of lignin with a honeycomb structure. On the detachment area, lignin acts as a molecular brace that may hold individual SECs together when they shed from the plant. In addition, it might limit cell wall processing enzymes to a confined area, allowing precision abscission.

"Because of the light and rigid property of the honeycomb architecture, it is perhaps unsurprising that we find plant cells have evolved such a structure to accomplish a potentially dangerous cellular process with great accuracy," explains Kwak.

Immediately after SECs are gone with the wind, RECs accumulate a thin cell wall, which is vulnerable to infections and external harm. To protect the newly formed cell surface, RECs shield themselves with a protective coating made of cutin, which is responsible for the surface protection against pathogens. This indicates that non-epidermal RECs change identity turning into epidermal cells. This is particularly interesting as the specification of epidermal cell identity was thought to be restricted to the embryonic stage.

The formation of this cutin layer is distinct from the mechanism of plant wound healing. The latter provides a protecting barrier made of cork rather than cutin. How the two processes are related is still mysterious. And while looking for the answer, let's enjoy the beautiful blooming of flowers and change of seasons.

Read the paper: A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis.

Article source: IBS.

Image credit: Elsevier Inc.


Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.

How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.

VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.