GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Plants, fungi and bacteria work together to clean polluted land

Highly complex interactions among roots, fungi and bacteria underlie the ability of some trees to clean polluted land, according to a novel study by bioinformatics and plant-biology experts from McGill University and Université de Montréal.

Fast-growing trees, such as willows, are known to tolerate and even rejuvenate soil contaminated with petroleum by-products or heavy metals. The clean-up of soil in this way is known as phytoremediation, and the process is commonly attributed to "secondary metabolism" -- the production of specialized compounds in plants that helps them cope with environmental stress.

New findings by the Montreal researchers, published in the journal Microbiome, suggest that a more intricate symbiosis of microbial life underpins willows' ability to thrive in these stressful conditions. Using advanced techniques for analyzing the simultaneous expression of genes from multiple organisms in an ecosystem, the scientists examined the roots of willows grown on a polluted site in suburban Montreal. They found that complex interactions among a range of ectomycorrhizal fungi -- which form symbiotic sheaths around the roots of plants -- and certain bacteria appeared to drive the degradation of hydrocarbons in the ground.

"We normally approach genetics by limiting the investigation to single organisms or domains of life," says Emmanuel Gonzalez, lead author of the study and bioinformatics specialist at the Canadian Centre for Computational Genomics at McGill. "What was so surprising here was that, by looking for the genetics of all the life below-ground, the biological picture actually became easier to see. This also suggests that such complex mutualistic interactions may be the natural norm outside of the laboratory."

Nicholas Brereton, a research fellow at Université de Montréal's Plant Biology Research Institute and senior author of the study, adds that "our initial mind-set was that bioinformatics and biology could be more profoundly integrated to see the diversity of function within a challenged root system. This quite quickly led to technical improvements in how we could observe gene expression across multiple life-forms, leading to new environmental biology discoveries. We hope these findings showcase how powerful cross-disciplinary dialogue can be for revealing the incredibly intricate solutions present in the natural world."

Read the paper: Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination.

Article source: McGill University.

Image credit: Hugues Massicotte


Wetlands are key for accurate greenhouse gas measurements in the Arctic

The Arctic is rapidly warming, with stronger effects than observed elsewhere in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C). Warming of Arctic soils and thawing of permafrost can have substantial consequences for the global climate, as the large C stored in soils could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming.

New approach to conserving tree species

Globally, forest trees are increasingly at risk from habitat destruction, pests and disease, and a changing climate. But the guidelines for effective preservation of a tree species' genetic diversity and adaptive potential have been limited to simple mathematical equations for crop collections from the 1970s, or best guesses based on intuitions.

Multidisciplinary team tackles agricultural threat to global food security

CLEMSON, South Carolina – Weak corn and sorghum stalks cause the loss of about 20 percent of the crops in the U.S. annually, and Rajan Sekhon and Christopher McMahan of Clemson University's College of Science are part of a multi-university consortium trying to find out why.