Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Plants can use underground communication to find out when neighbors are stressed

Corn seedlings that grow close together give off underground signals that impact the growth of nearby plants, reports a study published in the open-access journal PLOS ONE by Velemir Ninkovic from the Swedish University of Agricultural Sciences, Sweden, and colleagues.

Plants have developed complex, chemical systems of communication to compensate for their immobile lifestyle. Many of their messages take the form of chemicals secreted by roots into the soil, which are detected through the roots of nearby plants. These secretions tell plants whether their neighbors are relatives or strangers and help them direct their growth accordingly.

To better understand how aboveground interactions affect this underground communication system, the authors of the present study stressed corn seedlings and then looked for growth changes in nearby siblings. They brushed the corn leaves to simulate the touch of a nearby plant leaf and then collected the chemicals secreted by the roots in the seedling's growth solution. New plants transferred into that growth solution responded by directing their resources into growing more leaves and fewer roots than control plants.

The authors also tested newly germinated corn seedlings to see if they could detect differences in growth solutions from plants that had been touched and those that had not been disturbed. The seedling's primary root grew preferentially toward solutions from untouched plants, suggesting that it could differentiate between the two solutions.

The researchers demonstrated that even brief disturbances aboveground can lead to changes in underground communication that cause nearby plants to change their growth strategies. They note that researchers should take into account the extent to which they touch plants during an experiment, such as occurs while taking measurements, as the effects on touched plants and their neighbors have the potential to impact experimental results.

Lead author Velemir Ninkovic says: "Our study demonstrated that changes induced by above ground mechanical contact between plants can affect below ground interactions, acting as cues in prediction of the future competitors."

Read the paper: Aboveground mechanical stimuli affect belowground plant-plant communication.

Article source: PLOS.

Image credit: Elhakeem et al.

News

Ecological impact of logging in the Białowieża Forest extends far beyond logged areas

A team of researchers from the Swedish University of Agricultural Sciences, Siedlce University and the Mammal Research Institute Polish Academy of Sciences, has provided a first objective estimate of the extent of logging (since 2015) in the renowned Białowieża Forest. This forest is the last remaining area of lowland temperate forest with a primeval character in Europe and is a UNESCO World Heritage and Natura 2000 site.


Global warming increases wildfire potential damages in Mediterranean Europe

A study published in Nature Communications, led by researchers of the University of Barcelona in collaboration with other research institutions, shows that anthropogenic warming will increase the burned areas due fires in Mediterranean Europe, and the increase of the burned area could be reduced by limiting global warming to 1.5 ºC. The higher the warming level is, the larger the increase of the burned area is.


Genome of Sea Lettuce that Spawns Massive "Green Tides" Decoded

Sea lettuce, a fast-growing seaweed that spawns massive “green tides,” is a prolific thief, according to research that for the first time sequenced the genome of a green seaweed.