Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Plants can tell the time using sugars

A new study by an international team of scientists, including the University of Bristol, has discovered that plants adjust their daily circadian rhythm to the cycle of day and night by measuring the amount of sugars in their cells.

Plants, animals, fungi and some bacteria can estimate the time of day through their circadian rhythms.

These rhythms are regulated by an internal 'circadian clock', and how these clocks operate is a topic of importance for both agriculture and medicine. For example, changes in circadian rhythms have contributed to domestication of crops.

In the study, published in the journal Current Biology, the research team involving the Universities of Bristol, Cambridge, Campinas, Sao Paulo and Melbourne has discovered a process that adjusts the timing of the plant body clock so that it stays in tune with the environment.

They found that sugars made from photosynthesis are sensed, and this leads to the plant falling into rhythm with changes in energy provision throughout the day.

Dr Antony Dodd of the University of Bristol's School of Biological Sciences, said: "Our findings show the first mechanism in plants that shifts the circadian rhythm backwards or forwards to synchronise it with the environment.

"The plant continuously measures the amount of sugar in the cells and uses this information to make the required adjustments."

Plants need circadian their rhythms to be correctly synchronised with the timing of day and night, so their activities are matched to the time of day.

For example, circadian rhythms control the time when plants grow, when their flowers open and release scent, and allow plants to carefully use energy reserves so they do not starve in the night.

Circadian rhythms also help plants to detect changes in the seasons, which is crucial to ensure our crops mature in the correct season.

Dr Dodd added: "This means that the discovery of a mechanism that synchronizes the plant body clock with the time in the environment has identified a new process that could be exploited in future to improve crop performance."

Read the paper: Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63.

Article source: University of Bristol.

Image credit: Cleverson Matiolli

News

Nuclear events make a flower bloom

Flowers do more than give plants beautiful lovely colors and fragrances. They are the reproductive organs of the plant. Their formation depends on strict nuclear events that if compromised can leave the plant sterile. A new study by researchers at the Nara Institute of Science and Technology (NAIST) shows how two transcription factors, AGAMOUS and CRABS CLAW, bind sequentially to the gene YUC4, which is responsible for synthesizing the plant hormone auxin. The findings, which can be read in Nature Communications, provide an epigenetic explanation for proper formation of the gynoecium, the female reproductive organ of flowering plants.


Flower power with the family

For centuries, people have conveyed feelings of happiness and love with flowers. Now an EU research team has found that plants flower more when surrounded by relatives compared to when growing with strangers or alone.


Nature's 'laboratory' offers clues on how plants thrive through genetic diversity

Scientists have turned to nature’s own ‘laboratory’ for clues about how plants adapt in the environment to ensure their own survival.