Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Plant signals trigger remarkable bacterial transformation

Cycad plant roots release signals into the soil that triggers the transformation of bacteria into its motile form, helping them move to the plant roots and establish a symbiotic partnership.

The cycad Cycas revoluta is a palm-like plant that grows on rocky coastal cliffs in the sub-tropics and tropics. It has a symbiotic relationship with the Nostoc species of bacteria that can convert nitrogen from the atmosphere into ammonia, which the host plant can then use for its growth. Scientists knew that cycad roots produce a compound that can induce Nostoc species within the soil to transform into their motile form, hormogonia, and attracting them to the roots. However, nobody has determined what exactly the compound is.

In the current study published in the journal Scientific Reports, agricultural chemist Yasuyuki Hashidoko and colleagues at Hokkaido University investigated an extract made from the “coralloid roots” of C. revoluta plants. These are specialized roots that branch out from the plant’s main root system.

They found that the extract was able to trigger the transformation of Nostoc bacteria into hormogonia. Further analyses revealed the main active elements present in the extract were a mixture of diacylglycerols; typical compounds contained in plants that are composed of two fatty acid chains linked together.

The team tested each of the diacylglycerols for their abilities to act as hormogonia-inducing factors (HIF), and found that 1-palmitoyl-2-linoleoyl-sn-glycerol showed pronounced HIF-like activity on the bacteria. The investigations also enabled the researchers to theorize which specific changes to fatty acid chain segments led to the compounds having more, less, or no HIF-like activity.

“These findings appear to indicate that some common diacylglycerols act as hormogonium-inducing signal for Nostoc cyanobacteria, enabling them to move and transfer to host plants,” the researchers conclude. “Since the bacteria can provide host plants nitrogen to help them grow, better understanding of the system could someday lead to more efficient, less fertilizer-dependent agricultural production.”

Read the paper: Scientific Reports

Article source: Hokkaido University

Image: Yasuyuki Hashidoko, Hokkaido University

News

‘Exotic’ genes may improve cotton yield and quality

Cotton breeders face a “Catch-22.” Yield from cotton crops is inversely related to fiber quality. In general, as yield improves, fiber quality decreases, and vice-versa. “This is one of the most significant challenges for cotton breeders,” says Peng Chee, a researcher at the University of Georgia.


Excessive rainfall as damaging to corn yield as extreme heat, drought

Recent flooding in the Midwest has brought attention to the complex agricultural problems associated with too much rain. Data from the past three decades suggest that excessive rainfall can affect crop yield as much as excessive heat and drought. In a new study, an interdisciplinary team from the University of Illinois linked crop insurance, climate, soil and corn yield data from 1981 through 2016.


Scientists Reveal the Relationship Between Root Microbiome and Nitrogen Use Efficiency in Rice

A collaborative team led by Prof. BAI Yang and Prof. CHU Chengcai from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), recently examined the variation in root microbiota within 68 indica and 27 japonica rice varieties grown in field conditions. They revealed that the indica and japonica varieties recruited distinct root microbiota.