Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Plant protein complex plays large role in important growth and development process

A little-studied plant cellular complex plays an essential role in a biological process -- vacuole fusion -- critical to plant growth and development, according to new research from [North Carolina State University. The findings shed light on complex and important plant processes as well as on how plants may have adapted to respond to environmental signals.

Vacuoles are critical plant cell units that comprise some 80 to 95 percent of most plant cells. Plants die if vacuoles fail to develop properly. Believed to be a kind of plant garbage dump, with multiple roles in storage and recycling, vacuoles are also critical for pollen development, with sterility the consequence if the process goes awry.

While many plant cells contain one large vacuole, Marcela Rojas-Pierce wants to examine how, in some model plant Arabidopsis cells, vacuoles control the opening and closing of stomata -- plant "pores" that must be regulated to balance carbon dioxide intake and the release of oxygen via water vapor.

"Vacuoles fuse together when stomata open as they are exposed to light, and then they come apart or fragment to close the stomata when it is dark," Rojas-Pierce, associate professor of plant and microbial biology at NC State and the corresponding author of a paper describing the research, said. "But this beautiful and elaborate system must be tightly regulated to properly ensure the plant's response to the environment."

Rojas-Pierce and colleagues examined the homotypic fusion and vascular protein sorting, or HOPS, complex of proteins. First identified as important in vacuole fusion in yeast, HOPS works with another group of proteins, the soluble NSF attachment protein receptors, or SNAREs, to promote vacuole fusion.

"SNARE proteins actually do the job of vacuole fusion, but our study showed that the HOPS protein VPS41 may be a key player in the process, while HOPS protein VPS33 may act as a chaperone to guide vacuole fusion," Rojas-Pierce said.

She added that this system is similar in other eukaryotes, or organisms with a cell nucleus.

The study also revealed some surprising findings. In yeast, the presence of certain lipids is required for vacuolar fusion to take place. This and a previous study found, instead, that these regulatory lipids inhibited vacuole fusion in plants. The current study also showed that the curvature of the vacuolar membranes may play an important role in their fusion in plants.

"This study showed both highly conserved and specific mechanisms for HOPS and its role in vacuolar fusion," Rojas-Pierce said.

Read the paper: Phosphoinositides control the localization of HOPS subunit VPS41, which together with VPS33 mediates vacuole fusion in plants.

Article source: North Carolina State University.

Image credit: Marcela Rojas-Pierce

News

Scientists identify mechanism that controls leaf growth and shape

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.


Scientists find great diversity, novel molecules in microbiome of tree roots

Researchers with the Department of Energy’s Oak Ridge National Laboratory have discovered that communities of microbes living in and around poplar tree roots are ten times more diverse than the human microbiome and produce a cornucopia of novel molecules that could be useful as antibiotics, anti-cancer drugs, or for agricultural applications.


In New Phytologist: Plants find ways to survive no matter the terrain

Researchers from Royal Holloway, University of London, together with the University of Osnabrück in Germany, have discovered that a fascinating plant employs two mechanisms to survive, no matter where it grows.