GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Plant parasite dodder transmits signals among different hosts

Around 1% of flowering plants are parasites. Some of these parasites can survive without host plants while others cannot. The former are called facultative parasites and the latter obligate parasites.

Based on their photosynthetic capability, parasites can be classified as either hemiparasites (those that perform photosynthesis) or holoparasites (those that do not).

Compared with normal autotrophic plants, plant parasites have unique physiological and ecological characteristics, as well as unique evolutionary histories. Many holoparasites exhibit special morphologies. For example, the root parasites Orobanche spp. (broomrapes) have no leaves and lack chlorophyll.

Although the morphology of parasitic plants varies, they all use a special organ, the haustorium, to attach to hosts, penetrate host tissues, and extract water and nutrients. Cuscuta spp. (dodder) is a plant parasite that connects to the vasculature of host plants to extract water, nutrients, and even macromolecules.

It is the only parasitic plant in the family Convolvulaceae, and is closely related to the morning glory and sweet potato. Dodders are leafless and rootless throughout their lifecycle, totally depending on host plants to survive. Whether hosts and dodders have any exchange of signaling molecules was previously unknown.

Like other parasites, it is generally believed that dodders are harmful to hosts. A research team led by Prof. WU Jianqiang, a scientist at the Kunming Institute of Botany of the Chinese Academy of Sciences (KIB/CAS) and the Max Planck Institute for Chemical Ecology in Germany, discovered that when a host plant is attacked by insects, dodders can transmit signals to other dodder-connected hosts, which then activate defense responses.

As a result of the induced defense responses in these dodder-connected host plants, insects grew smaller than on hosts whose dodder-connected neighboring plants were not attacked by insects.

Importantly, the researchers also revealed that mobile signals transmitted by dodders are ancient and well conserved. Jasmonic acid (a plant hormone) plays an important role in generating these signals; such signals are produced very rapidly and can travel through a dodder network at least one meter long.

This is the first time that dodders have been found to transmit inter-plant signaling. This discovery shows that, in addition to damaging hosts, dodders also transmit ecologically meaningful information among host plants.

Read the paper: Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

Article source: Chinese Academy of Sciences.

Image credit: Zhang Jingxiong


Forty years of data quantifies benefits of Bt corn adoption across multiple crops for the first time

University of Maryland researchers have pulled together forty years of data to quantify the effects of Bt field corn, a highly marketed and successful genetically engineered technology, in a novel and large-scale collaborative study. Other studies have demonstrated the benefits of Bt corn or cotton adoption on pest management for pests like the European corn borer or cotton bollworm in corn or cotton itself, but this is the first study to look at the effects on other offsite crops in North America. By tracking European corn borer populations, this study shows significant decreases in adult moth activity, recommended spraying regimens, and overall crop damage in vegetable crops such as sweet corn, peppers, and green beans. These benefits have never before been documented and showcase Bt crops as a powerful tool to reduce pest populations regionally thereby benefitting other crops in the agricultural landscape.

A lesson from Darwin on marine ecosystems

When British naturalist Charles Darwin traveled to the Galapagos Islands in 1835, he took notice of the giant kelp forests ringing the islands. He believed that if those forests were destroyed, a significant number of species would be lost. These underwater ecosystems, Darwin believed, could be even more important than forests on land.

Climate change risk for half of plant and animal species in biodiversity hotspots

Up to half of plant and animal species in the world's most naturally rich areas, such as the Amazon and the Galapagos, could face local extinction by the turn of the century due to climate change if carbon emissions continue to rise unchecked.