Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Plant-derived volatiles may serve as future antifungals

A research team at the VIB-KU Leuven Center for Microbiology has developed a novel screening method to identify antimicrobial properties of volatile substances. With this assay, they tested the vapour-phase-mediated activity of 175 essential oils (EOs) and 37 EO components. Approximately half of them proved active against the most drug-resistant type of Candida. In a context of fungi showing increasing drug resistance, these findings may be useful in both medical and agricultural applications.

The research project, led by prof. Patrick Van Dijck, is rooted in the growing problem of antifungal drug resistance. Candida cells, for example, are quickly becoming tolerant to fluconazole, the most-used antifungal drug. Next to exploring experimental new techniques, scientists also seek to repurpose existing substances. Plant essential oils (EOs), metabolites obtained by steam distillation or cold citrus peel pressing, may offer interesting opportunities: they are made up of compounds that help protect the plant against microbial or herbivore attacks.

Identifying EOs and their compounds
In the VIB-KU Leuven Center for Microbiology, Adam Feyaerts gathered a collection of 175 different EOs, constituting a collection of over one thousand different small molecules. The aim was to identify biologically active compounds present in these complex mixtures. They therefore developed a new class of assay that allowed to identify new volatile substances with antifungal activities over a distance.

Prof. Patrick Van Dijck (VIB-KU Leuven): “We screened our whole collection of EOs for vapor-phase mediated antifungal activity against two human fungal pathogens, Candida albicans and Candida glabrata. Interestingly, we found that approximately half of the EOs and their compounds had vapour-phase-mediated activity against both Candida species. Surprisingly, C. glabrata, the most drug-resistant species of the two was on average even more susceptible. In contrast, none of the currently used antifungals showed any vapour-phase-mediated activity.”

Numerous potential applications
This is now the first simple test to look for the vapor-phase-mediated antimicrobial activity of molecules. The same assay could also be used to test other biological activity. And although these findings still have to be confirmed in clinical trials, potential applications are numerous.

Co-author Adam Feyaerts (VIB-KU Leuven): “Our findings are for instance a starting point for the development of molecules that could also be used in vaporizers. After all, volatiles can access otherwise hard to reach areas. Think of possibilities such as maintaining hygiene in hospitals or treat patients with lung infections. There are agricultural options too, such as preventing post-harvest contamination or protecting crops against pests.”

Read the paper: Essential oils and their components are a class of antifungals with potent vapour-phase-mediated anti-Candida activity.

Article source: VIB-KU Leuven Center for Microbiology.

News

A small number of crops are dominating globally. And that’s bad news for sustainable agriculture

A new University of Toronto study suggests that globally we're growing more of the same kinds of crops, and this presents major challenges for agricultural sustainability on a global scale.


How plants cope with iron deficiency

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health. Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly. Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant's iron requirements vary throughout its development depending on external circumstances.


Biotechnology to the rescue of Brussels sprouts

An international team has identified the genes that make these plants resistant to the pathogen that attacks crops belonging to the cabbage family all over the world.