Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Plant-derived volatiles may serve as future antifungals

A research team at the VIB-KU Leuven Center for Microbiology has developed a novel screening method to identify antimicrobial properties of volatile substances. With this assay, they tested the vapour-phase-mediated activity of 175 essential oils (EOs) and 37 EO components. Approximately half of them proved active against the most drug-resistant type of Candida. In a context of fungi showing increasing drug resistance, these findings may be useful in both medical and agricultural applications.

The research project, led by prof. Patrick Van Dijck, is rooted in the growing problem of antifungal drug resistance. Candida cells, for example, are quickly becoming tolerant to fluconazole, the most-used antifungal drug. Next to exploring experimental new techniques, scientists also seek to repurpose existing substances. Plant essential oils (EOs), metabolites obtained by steam distillation or cold citrus peel pressing, may offer interesting opportunities: they are made up of compounds that help protect the plant against microbial or herbivore attacks.

Identifying EOs and their compounds
In the VIB-KU Leuven Center for Microbiology, Adam Feyaerts gathered a collection of 175 different EOs, constituting a collection of over one thousand different small molecules. The aim was to identify biologically active compounds present in these complex mixtures. They therefore developed a new class of assay that allowed to identify new volatile substances with antifungal activities over a distance.

Prof. Patrick Van Dijck (VIB-KU Leuven): “We screened our whole collection of EOs for vapor-phase mediated antifungal activity against two human fungal pathogens, Candida albicans and Candida glabrata. Interestingly, we found that approximately half of the EOs and their compounds had vapour-phase-mediated activity against both Candida species. Surprisingly, C. glabrata, the most drug-resistant species of the two was on average even more susceptible. In contrast, none of the currently used antifungals showed any vapour-phase-mediated activity.”

Numerous potential applications
This is now the first simple test to look for the vapor-phase-mediated antimicrobial activity of molecules. The same assay could also be used to test other biological activity. And although these findings still have to be confirmed in clinical trials, potential applications are numerous.

Co-author Adam Feyaerts (VIB-KU Leuven): “Our findings are for instance a starting point for the development of molecules that could also be used in vaporizers. After all, volatiles can access otherwise hard to reach areas. Think of possibilities such as maintaining hygiene in hospitals or treat patients with lung infections. There are agricultural options too, such as preventing post-harvest contamination or protecting crops against pests.”

Read the paper: Essential oils and their components are a class of antifungals with potent vapour-phase-mediated anti-Candida activity.

Article source: VIB-KU Leuven Center for Microbiology.

News

Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.


How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.


VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.