Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Photosynthesis under the light conditions different from the Earth: New prediction of a detection wavelength for searching phototrophs on exoplanets

Researchers at the Astrobiology Center (ABC) of National Institutes of Natural Science (NINS) in Japan and their colleagues have proposed a prediction that red-edge could be observed as on the Earth even on exoplanets around M-dwarfs. They pointed out that the first oxgenic photorophs are most likely to have evolved underwater to utilize visible light just like what had happened in the primordial ocean on the Earth. They examined light adaptation mechanisms of visible- and IR-radiation-using phototrophs required for adapting to land habitats and found out that IR-using phototrophs struggle to adapt to changing light condition at the boundary of water and land surface.

M-dwarfs or red dwarfs are small (0.5-0.1 solar-masses) and cool ( ~3000 Kelvin) stars, and are abundant in universe. The Sun-like stars have been attracting most attention as a plausible target for searching habitable exoplanets. However, nearby M-dwarfs are becoming the most extensive targets for habitable planet searches because they are the most abundant nearby stars and thus could be the first candidate for detecting any biosignatures on exoplanets via transit or direct imaging observations in near future.

One of the most important exoplanetary biosignatures is a specific reflection pattern on the land surface named ‘red-edge’, which is caused by vegetation such as forests and grasslands. On the Earth, red-edge appears between red and infrared (IR) wavelengths, since red-light is absorbed for photosynthesis while IR radiation is reflected. In previous studies, it was predicted that red-edge position on exoplanets should be decided by the radiation spectrum by nearby stars. Around M-dwarfs, red-edge was expected to be shifted to a longer wavelength, since planets on the exoplanets use abundant IR radiation for photosynthesis.

Researchers at the Astrobiology Center (ABC) of National Institutes of Natural Science (NINS) in Japan and their colleagues have proposed and alternative prediction that red-edge could be observed as on the Earth even on exoplanets around M-dwarfs in the online journal Scientific Reports. They pointed out that the first oxgenic photorophs are most likely to have evolved underwater to utilize visible light just like what had happened in the primordial ocean on the Earth. They examined light adaptation mechanisms of visible- and IR-radiation-using phototrophs required for adapting to land habitats and found out that IR-using phototrophs struggle to adapt to changing light condition at the boundary of water and land surface. Kenji Takizawa, lead author of the study, said “It is too risky to utilize IR-radiation during water-to-land evolution.”

If phototrophs keep their photosynthetic apparatus for landing, the red-edge position of the land surface on M-dwarf planets show just like as on the Earth, at the initial stage of land vegetation. Therefor, non-shifted red-edge should be kept in mind for searching habitable planets around M-dwarfs and perparation of such biosignature-hunting instruments.

Read the paper: Red-edge position of habitable exoplanets around M-dwarfs.

Article source: National Astronomical Observatory of Japan.

Image credit: Astrobiology Center

News

Disease-resistant apples perform better than old favorites

You may not find them in the produce aisle yet, but it's only a matter of time before new disease-resistant apple cultivars overtake favorites like Honeycrisp in popularity, according to a University of Illinois apple expert.


Microbiome transplants provide disease resistance in critically endangered Hawaiian plant

Transplanting wild microbes from healthy related plants can make a native Hawaiian plant healthier and likelier to survive in wild according to new research from The Amend Laboratory in the University of Hawai'i at Mānoa (UHM) Botany Department and the O'ahu Army Natural Resources Program (OANRP). Professor Anthony Amend and postdoctoral researcher Geoff Zahn used microbes to restore the health of a critically endangered Hawaiian plant that, until now, had been driven to extinction in the wild and only survived in managed greenhouses under heavy doses of fungicide.


Sun's role in mitigating fungal disease of mango fruit

Mango fruits play host to some economically damaging fungal diseases, especially during ripening and storage; but mango growers and suppliers have a new ray of hope...in the form of sunlight.