GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Photosynthesis Like a Moss

Moss evolved after algae but before vascular land plants, such as ferns and trees, making them an interesting target for scientists studying photosynthesis, the process by which plants convert sunlight to fuel. Now researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have made a discovery that could shed light on how plants evolved to move from the ocean to land.

A team of Berkeley Lab researchers led by Masakazu Iwai and Krishna Niyogi examined photosystem I, a complex of several proteins known as the “electron hub” for its role in photosynthetic electron transport. Using cryo-electron microscopy (cryo-EM), which allows an unprecedented level of resolution, they found the structure of the protein in a species of moss called Physcomitrella patens is different from that in other types of plants, such as algae and grass.

Their paper, “A Unique Supramolecular Organization of Photosystem I in the Moss Physcomitrella patens” was published in the journal, Nature Plants. Said Iwai, the lead and corresponding author and a researcher in Berkeley Lab’s Biosciences Area, “There’s still a lot that’s unknown about photosynthesis. This study may help us to understand plant terrestrialization, how plants evolved to live on land without aqueous conditions.”

Niyogi, a biologist and the corresponding author, added, “Adaptation of plants to the terrestrial environment was a huge and challenging step in the evolution of life on Earth, so it is important to understand the biological innovations and processes that allowed this to occur.”

What’s more, improved understanding of how nature performs photosynthesis, which is responsible for nearly all of the primary production of biomass on the planet, can help scientists develop artificial photosynthesis, a scheme for producing fuel from sunlight, water, and carbon dioxide.

For the study, the researchers compared the structure of photosystem I in the moss with its structure in the small flowering land plant Arabidopsis thaliana, and in the green alga, Chlamydomonas reinhardtii. Specifically, they looked at photosynthetic light harvesting, which is performed by a “supercomplex” made up of two protein complexes, photosystem I and its light-harvesting complex proteins.

Iwai worked with Patricia Grob and Eva Nogales of Berkeley Lab for the cryo-EM imaging, which allows researchers to get high-resolution images of the structure of the protein without having to crystallize or stain the sample.

“Light is absorbed and transferred to the reaction centers of photosystems I and II with almost perfect efficiency, and this paper shows a unique arrangement of the pigment-protein complexes that accomplish this feat,” Niyogi said. “The work has implications for the evolution of photosynthesis in plants, because the organism that we studied – Physcomitrella (a moss) – is a representative of one of the earliest lineages of land plants, so we can get a picture of what the light-harvesting antenna might have looked like during land plant evolution.”

Read the paper:Nature Plants

Article source: Lawrence Berkeley National Laboratory

Image credit: Hermann Schachnera


A small number of crops are dominating globally. And that’s bad news for sustainable agriculture

A new University of Toronto study suggests that globally we're growing more of the same kinds of crops, and this presents major challenges for agricultural sustainability on a global scale.

How plants cope with iron deficiency

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health. Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly. Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant's iron requirements vary throughout its development depending on external circumstances.

Biotechnology to the rescue of Brussels sprouts

An international team has identified the genes that make these plants resistant to the pathogen that attacks crops belonging to the cabbage family all over the world.