GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Novel signaling pathway for chilling tolerance in rice revealed

The ability of plants to tolerate chilling stress is fundamental in determining the growing season and geographical distribution of plants. Local temperature anomalies caused by global climate change directly threaten crop production.

Improvement of chilling tolerance in rice varieties requires clarifying the regulatory mechanisms of chilling signaling pathways.

The primary signal transduction pathway of chilling tolerance in rice has been established already, but how the diverse components are regulated is not clear.

OsbHLH002 is one of more than 100 members of the bHLH transcription factor family in rice and has the highest homology with Arabidopsis ICE1 protein, which is one of the core members in the cold signaling pathway in Arabidopsis (hence OsbHLH002 is also called OsICE1).

The research team led by Prof. CHONG Kang from the Institute of Botany of the Chinese Academy of Sciences has revealed a new mechanism for chilling tolerance mediated by OsMAPK3-OsbHLH002-OsTPP1 in rice.

The research team had shown in 2009 that overexpression of the wild rice gene OrbHLH2 enhanced tolerance to osmotic stress in Arabidopsis.

This time they discovered that the cold-activated protein kinase OsMAPK3 phosphorylates the transcription factor OsbHLH002/OsICE1 directly to enhance its transactivation activity.

Moreover, OsMAPK3 attenuated the interaction between OsbHLH002 and E3 ubiquitin ligase OsHOS1, which led to reduced ubiquitination and degradation of OsbHLH002.

The increase of the protein content and transactivation activity of OsbHLH002 effectively activates the expression of OsTPP1 (encoding trehalose-6-phosphatase) to promote the hydrolysis of trehalose-6-phosphate, increasing the trehalose content and enhancing the chilling tolerance of rice.

These results established a novel pathway OsMAPK3-OsbHLH002-OsTPP1. This pathway transduces the cold signal from the kinase cascade system to the nucleus and promotes synthesis of an osmotic protectant to regulate the chilling tolerance in rice.

Read the paper: OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance.

Article source: Chinese Academy of Sciences.

Image credit: XU Yunyuan


Forty years of data quantifies benefits of Bt corn adoption across multiple crops for the first time

University of Maryland researchers have pulled together forty years of data to quantify the effects of Bt field corn, a highly marketed and successful genetically engineered technology, in a novel and large-scale collaborative study. Other studies have demonstrated the benefits of Bt corn or cotton adoption on pest management for pests like the European corn borer or cotton bollworm in corn or cotton itself, but this is the first study to look at the effects on other offsite crops in North America. By tracking European corn borer populations, this study shows significant decreases in adult moth activity, recommended spraying regimens, and overall crop damage in vegetable crops such as sweet corn, peppers, and green beans. These benefits have never before been documented and showcase Bt crops as a powerful tool to reduce pest populations regionally thereby benefitting other crops in the agricultural landscape.

A lesson from Darwin on marine ecosystems

When British naturalist Charles Darwin traveled to the Galapagos Islands in 1835, he took notice of the giant kelp forests ringing the islands. He believed that if those forests were destroyed, a significant number of species would be lost. These underwater ecosystems, Darwin believed, could be even more important than forests on land.

Climate change risk for half of plant and animal species in biodiversity hotspots

Up to half of plant and animal species in the world's most naturally rich areas, such as the Amazon and the Galapagos, could face local extinction by the turn of the century due to climate change if carbon emissions continue to rise unchecked.