Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Novel mechanism that detains mobile genes in plant genome

A team of Hokkaido University researchers has discovered a hitherto-unknown mechanism that detains transposable elements or "mobile genes" -- which can move and insert into new positions in plant genomes.

Transposable elements (TEs), also known as mobile genes, are considered parasites of host genomes because they act as powerful mutagens. If not kept in check, they can cause gene disruption, genome rearrangement and genomic takeover. Thus, an essential function of organisms is controlling the movements of this troublemaker. Until now, all identified TE regulations were epigenetic-dependent, meaning that the production of TE proteins are suppressed.

A TE called Tam3 in snapdragons (Antirrhinum majus) can be regulated into active and inactive states through temperature fluctuations. It is thus possible for researchers to identify a mechanism whereby TE falls into an inactive state. The Hokkaido University research team then focused on the Tam 3 transposase protein, which is produced by the TE to enable it to move, and by employing various means investigated its positions in the cell.

According to their research, snapdragons detained Tam3 transposase within the plasma membrane when Tam3 was inactivated. When Tam3 was activated, Tam3 moved to the cell nucleus, where it is normally found.

The team also found that a structure called "Znf-BED" within Tam3 transposase plays a pivotal role in detaining Tam3 at the plasma membrane. When part of Znf-BED was changed, the transposase did not move to the plasma membrane and instead entered the cell nucleus. The team thus suggests that unknown protein produced by snapdragons binds to Tam3 transposase through Znf-BED, and detains them at the plasma membrane.

"It is the first time that such a TE detainment has been discovered," says Kaien Fujino in the research team. "The newly-found mechanism, which detains TEs after proteins are produced, is different from epigenetic regulation, where gene expression is controlled before protein is generated. Our findings should facilitate research on similar mechanisms of mobile elements in other organisms."

Read the paper: Detainment of Tam3 transposase at plasma membrane by its BED-zinc finger domain.

Article source: Hokkaido University.

Image credit: Zhou et al.

News

Shallow soils promote savannas in South America

New research suggests that the boundary between South American tropical rainforests and savannas is influenced by the depth to which plants can root. Shallow rooting depth promotes the establishment of savannas. Previous research has shown that precipitation and fire mediate tropical forest and savanna distributions. The study shows that below ground conditions need to be considered to understand the distribution of terrestrial vegetation both historically and in the face of future climate change. The study by researchers of the Senckenberg Biodiversity and Climate Research Centre and Goethe University is based on computer vegetation models and was published in the Journal of Biogeography.


Living mulch builds profits and soil

Living mulch functions like mulch on any farm or garden except -- it's alive. No, it's not out of the latest horror movie; living mulch is a system farmers can use to benefit both profits and the soil. While the system has been around for a while, scientists at the University of Georgia are making it more efficient and sustainable.


Sequencing of stevia plant genome revealed for first time by Purecircle Stevia Institute

For the first time, scientists have completed the sequencing of the stevia plant genome. Lead scientists from PureCircle Stevia Institute and KeyGene have unveiled this major breakthrough in research showing the annotated, high-quality genome sequences of three stevia cultivars.