Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


New understanding of how plants respond to environmental stresses

Researchers from the Spanish National Research Council have uncovered a family of proteins that play a vital role in coordinating the cellular response of plants to various environmental stresses, in particular drought and temperature fluctuations.

A collaboration between the Institute of Molecular and Cellular Plant Biology (IBMCP) of the Universitat Politècnica de València (Polytechnic University of Valencia, UPV) and the Spanish National Research Council (CSIC), and the Rocasolano-CSIC Institute of Physical Chemistry (IQFR-CSIC), the findings were published in the Proceedings of the National Academy of Sciences (PNAS) and could help improve the defensive processes of plants in the driest regions of the Mediterranean Basin.

Cellular membranes are the point of contact between the cell and its external environment. A large number of receptor systems are concentrated here that process the ever-changing signals received from the outside world. Be it heat, cold, drought, etc., the cells must respond adequately to each of these environmental stresses in order to maintain the plant’s vital functions. In plants these processes are constantly ‘on’; being rooted in the ground, they have no other response to stresses deriving from changing weather conditions, or the simple passage of night to day.

This study has identified a family of proteins, the CAR proteins, which cluster together to create a series of points throughout the membrane that can be used by key signalling proteins to carry out their respective adaptive functions. CSIC researcher Pedro Luis Rodriguez from the IBMCP explain: “These [CAR] proteins form a kind of landing strip, acting as molecular antennas that call out to other proteins as and when necessary to orchestrate the required cellular response”.

“In a medium-sized cell, the distance a molecule must travel from the point at which it synthesises to the membrane itself is comparable, relatively, to the distance between Madrid and Cádiz. For this journey there are mediators, both during and at the point of arrival, where they carry out a fundamental role in docking the signalling proteins in the appropriate cellular context”, adds fellow CSIC researcher, Armando Albert, from the IQFR.

CAR proteins are one such mediator, playing a central role in the regulation of the plant’s adaptive response to environmental stresses.

This research sheds light on an as yet not fully resolved question in plant biology, and could lead to interventions to improve resistance to drought, for instance.

Read the paper in PNAS: Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

Article source: R&I World - also available in Spanish at the UPV website

Image credit: UPV

News

Plants prove to be efficient antifungal factories

Researchers of the Institute of Plant Molecular and Cellular Biology (IBMCP), a mixed centre of the Valencia Polytechnic University (UPV) and the Spanish National Research Council (CSIC), in collaboration with the Centre of Agrigenomic Research (CRAG) of the CSIC, the government of Catalunya, the Authonomous University of Barcelona and the University of Barcelona; and the Institute of Food Agrochemistry and Technology (IATA) of the CSIC, have been able to efficiently produce antifungal proteins in plants, based on a modified tobacco mosaic virus. The results of this research, which could have a great impact in the agri-food industry, have been published in the Plant Biotechnology Journal.


Nuclear events make a flower bloom

Flowers do more than give plants beautiful lovely colors and fragrances. They are the reproductive organs of the plant. Their formation depends on strict nuclear events that if compromised can leave the plant sterile. A new study by researchers at the Nara Institute of Science and Technology (NAIST) shows how two transcription factors, AGAMOUS and CRABS CLAW, bind sequentially to the gene YUC4, which is responsible for synthesizing the plant hormone auxin. The findings, which can be read in Nature Communications, provide an epigenetic explanation for proper formation of the gynoecium, the female reproductive organ of flowering plants.


Flower power with the family

For centuries, people have conveyed feelings of happiness and love with flowers. Now an EU research team has found that plants flower more when surrounded by relatives compared to when growing with strangers or alone.