Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


New plant research solves a colorful mystery

Research led by scientists at the John Innes Centre has solved a long-standing mystery by deducing how and why strange yet colourful structures called 'anthocyanic vacuolar inclusions' occur in some plants.

Pansy petals, blueberries and autumn leaves all have something in common - their characteristic purple, blue and orange-red colours are all caused by the accumulation of pigment molecules called anthocyanins.

As well as contributing to a wide range of plant colours, the patterns and shading caused by anthocyanins can help to guide pollinators towards flowers, or animals towards fruits for seed dispersal. Anthocyanins also help to protect plants against the destructive photo-oxidative damage that can be caused by various stresses including high levels of ultraviolet light.

It has been known for some time that anthocyanins accumulate in the vacuoles of plant cells and, being soluble, they are usually uniformly distributed throughout the vacuole. However, previous research has also noted that, in some plants, distinct, densely coloured clusters of anthocyanins can form within the vacuoles.

Until now, it was not known how these unusual 'anthocyanic vacuolar inclusions' (AVIs) formed - or indeed why. However, a study led by the John Innes Centre's Professor Cathie Martin and published in the journal Current Biology, reveals new understanding of the molecular mechanisms underpinning the formation of AVIs.

Several other John Innes Centre researchers were also involved in the research, along with international collaborators from China, New Zealand and Norway.

The tobacco plant (Nicotiana tabacum), which is commonly used as a model organism in plant research, does not normally produce high levels of anthocyanins. However, by genetically modifying tobacco plants to produce proteins from the magenta-coloured snapdragon flower, the team observed the formation of the vacuole-soluble form of anthocyanins.

The study's first author, Dr Kalyani Kallam of the John Innes Centre, said:

"By crossing our soluble anthocyanin-producing tobacco plants with genetically modified lines expressing proteins from plants that modify anthocyanins we generated progeny tobacco plants that formed AVIs. By experimenting with different genes and conditions, we could work out the chemical steps involved in forming AVIs. Furthermore, we deduced that AVIs are not bound by a membrane, they are formed when anthocyanins precipitate out of solution in the vacuole, and this is dependent upon pH."

Professor Cathie Martin said:

"In many plants, the formation of AVIs is most likely an unavoidable chemical behaviour of specific anthocyanins under certain conditions. However, in some plants - like Lisianthus (also known as Prarie Gentian), which has a very darkly pigmented central region in its flower petals - AVIs may help to increase the intensity of pigmentation to help attract pollinators or seed dispersers."

Read the paper: Aromatic decoration determines the formation of anthocyanic vacuolar inclusions.

Article source: John Innes Centre.

Image credit: john Innes Centre

News

New 'Buck' naked barley: Food, feed, brew

Researchers at Oregon State University (OSU) are giving an ancient grain a new life: this barley is naked, but not in an indecent way.


Clean and green: A moss that removes lead (Pb) from water

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan have demonstrated that that moss can be a green alternative for decontaminating polluted water and soil. Published in PLOS One, the study shows that in particular, the moss Funaria hygrometrica tolerates and absorbs an impressive amount of lead (Pb) from water.


New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.