Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Multiple facets of biodiversity reduce variability of grassland biomass production

A new study shows that, in addition to species richness, plant evolutionary history plays a critical role in regulating year-to-year variation of biomass production in grasslands. In the face of climate change, understanding the causes of variability in key ecosystem services such as biomass production is essential. A team of researchers led by the German Centre for Integrative Biodiversity Research (iDiv), University of Göttingen, and Senckenberg Biodiversity and Climate Research Centre (SBiK-F) has published the results in Nature Ecology and Evolution. They show that multiple factors, including biodiversity and climate, jointly reduce annual variation in grassland productivity.

Biodiversity is much more than just counting species; it also includes diversity in how plants function and in the history of how they have evolved. Despite the growing appreciation for biodiversity and its role in buffering the impacts of vital ecosystem services, these other aspects of biodiversity are frequently overlooked. An international team of researchers examined how multiple facets of biodiversity contribute to year-to-year variation in grassland biomass production. The researchers measured biomass, which is the dry weight of plant matter (including grassland and other species). "We show that grassland communities with high species richness and high diversity in evolutionary history show reduced variation in biomass production," says Dylan Craven, lead author of the study, who summarised the results of the sTability synthesis workshop at iDiv. He is now postdoctoral researcher at the University of Göttingen. "Our results suggest that greater diversity in evolutionary history makes biomass production in grasslands more stable because these communities are less vulnerable to herbivore attacks or pathogen outbreaks."

The researchers also found that biomass production of plant communities dominated by slow-growing species typically varied less. Peter Manning, the senior author of the study, says : "We were surprised by these results because we had expected that communities with a greater diversity in characteristics related to plant growth rates would have more stable biomass production, but actually species richness as measured by evolutionary history and genetic diversity were better predictors." However, the researchers caution that lower year-to-year variation does not imply that grasslands will be more productive, and that measures of stability that consider over- and under-production may be more relevant for agro ecological applications.

Read the paper: Multiple facets of biodiversity drive the diversity–stability relationship.

Article source: iDiv.

Image credit: Anne Ebeling, FSU

News

Scientists identify mechanism that controls leaf growth and shape

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.


Scientists find great diversity, novel molecules in microbiome of tree roots

Researchers with the Department of Energy’s Oak Ridge National Laboratory have discovered that communities of microbes living in and around poplar tree roots are ten times more diverse than the human microbiome and produce a cornucopia of novel molecules that could be useful as antibiotics, anti-cancer drugs, or for agricultural applications.


In New Phytologist: Plants find ways to survive no matter the terrain

Researchers from Royal Holloway, University of London, together with the University of Osnabrück in Germany, have discovered that a fascinating plant employs two mechanisms to survive, no matter where it grows.