GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Model by which plants adapt their photosynthetic metabolism to light intensity

Researchers from cicCartuja, a centre jointly run by the University of Seville and the Centro Superior de Investigaciones Científicas (Higher Scientific Research Centre -- CSIC), have proposed a model that explains the molecular mechanism used by plants to adapt their photosynthetic mechanism to light intensity.

Photosynthesis is Earth's primary production process for organic material and oxygen. During the day, CO2 fixation and photosynthetic metabolism remain active in plant chloroplasts via a regulatory mechanism in which redox systems like thioredoxins (TRXs) play a central role. The chloroplastic TRXs use ferredoxin (Fd) reduced by the photosynthetic flow of electrons, so connecting the metabolic regulation with the light. In addition, the chloroplasts have NTRC, an additional redox system, exclusive to photosynthetic organisms, which, as occurs in heterotrophic organisms, uses NADPH as reducing power.

Photosynthesis inevitably generates oxidising agents, such as hydrogen peroxide, which can be harmful. For this reason, the chloroplasts have protective systems like 2-cys peroxiredoxins (2CP), whose activity depends on NTRC, and so an antioxidant function has been proposed for this enzyme. However later studies have shown the participation of NTRC in metabolic processes regulated by TRXs, like starch and chlorophyll synthesis. These results suggest a profound interrelationship between redox systems based in Fd (TRXs) and NADPH (NTRC) and antioxidants by means of a mechanism with an unknown molecular base.

The authors of this study -- all researched from the institute of Plant Biochemistry and Photosynthesis, a joint University of Seville-CSIS centre, which is part of the Isla de la Cartuja Scientific Research Centre (cicCartuja) -- have shown that the functioning of photosynthetic metabolism and its adaptation to unpredictable changes in light intensity depend on the redox balance of the peroxiredoxins (2CP), which act by integrating the complex redox regulation systems of the chloroplasts.

These results -- obtained from the model species Arabidopsis thaliana -- signify an important advance in the knowledge of photosynthesis and suggest new biotechnological approaches for increasing both the photosynthetic rate of CO2 fixation and the consequent production of organic material.

Read the paper: NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus.

Article source: University of Seville.


Plant mothers 'talk' to their embryos via the hormone auxin

While pregnancy in humans and seed development in plants look very different, parallels exist -- not least that the embryo develops in close connection with the mother. In animals, a whole network of signals from the mother is known to influence embryo development. In plants, it has been clear for a while that maternal signals regulate embryo development. However, the signal itself was unknown -- until now. Plant scientists at the Institute of Science and Technology Austria (IST Austria), Central European Institute of Technology (CEITEC) and the University of Freiburg have now found that a plant hormone, called auxin, from the mother is one of the signals that pattern the plant embryo. Their study is published in Nature Plants.

Archaeologists discover bread that predates agriculture by 4,000 years

At an archaeological site in northeastern Jordan, researchers have discovered the charred remains of a flatbread baked by hunter-gatherers 14,400 years ago. It is the oldest direct evidence of bread found to date, predating the advent of agriculture by at least 4,000 years. The findings suggest that bread production based on wild cereals may have encouraged hunter-gatherers to cultivate cereals, and thus contributed to the agricultural revolution in the Neolithic period.

Climate change-induced march of treelines halted by unsuitable soils

New research from the University of Guelph is dispelling a commonly held assumption about climate change and its impact on forests in Canada and abroad.