Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Microbiome transplants provide disease resistance in critically endangered Hawaiian plant

Transplanting wild microbes from healthy related plants can make a native Hawaiian plant healthier and likelier to survive in wild according to new research from The Amend Laboratory in the University of Hawai'i at Mānoa (UHM) Botany Department and the O'ahu Army Natural Resources Program (OANRP). Professor Anthony Amend and postdoctoral researcher Geoff Zahn used microbes to restore the health of a critically endangered Hawaiian plant that, until now, had been driven to extinction in the wild and only survived in managed greenhouses under heavy doses of fungicide.

The plant, Phyllostegia kaalaensis, is in the mint family and only grew in the Waianae mountain range in West Oahu. It is listed as critically-endangered, and from 2002 until now, has only existed in two greenhouses on O'ahu, one managed by the State of Hawai'i and one by the U.S. Army. The major threats to its survival in the wild are habitat loss, invasive animals like pigs and rats, and diseases. In fact, one powdery mildew fungus does so much damage to these fragile plants that, even in a greenhouse, they require monthly fungicide treatments.

One problem with this fungicide-dependence is that plants aren't so different from humans or other animals--when it comes to their health, every plant and animal depends on a collection of beneficial micro-organisms. In plants, the microbes that live in their leaves, stems, and roots, are called endophytes, and "good" fungi make up an important part of this consortium. Endophytic fungi are known to help plants survive droughts, obtain nutrients and minerals, as well as fight off infections. In fact, some of our antibiotics and cancer drugs derive from these endophytes. But when plants are sprayed with fungicides in a greenhouse, it doesn't just kill the fungal diseases, it also kills the beneficial endophytes.

Amend and Zahn wanted to test the idea of whether it was possible to apply "probiotics for plants." They took leaves from a closely related wild that plant was healthy and contained a typical mix of endophytes, blended them into a smoothie and sprayed the mixture onto the leaves of P. kaalaensis to see if beneficial microbes could be transplanted from one species to another. They then subjected these plants, along with a control group, to the deadly powdery mildew. The plants that received the microbial spray were able to resist disease, those that didn't receive the spray soon died. Using DNA barcode sequencing to identifying which species were inside leaves before, during, and after the disease, Amend and Zahn determined the beneficial fungus that was most likely responsible for protection from disease: the yeast Pseudozyma aphidis. Those treated plants did so well, that they have since been planted out in the wild, and now represent the only wild population of P. kaalaensis on the planet.

"The power of this approach lies in its simplicity," said Zahn. "There are quite a few plant species that only exist in the "purgatory" of managed greenhouses, and quickly succumb to disease when they are taken to the wild and away from their regular fungicide treatments. Spraying these plants with a slurry of beneficial fungi once before outplanting could increase their chances of surviving in the wild."

Read the paper: Foliar microbiome transplants confer disease resistance in a critically-endangered plant.

Article source: University of Hawai'i at Mānoa.

Image credit: Geoff Zahn

News

High CO2 levels cause plants to thicken their leaves, which could worsen climate change effects, researchers say

Plant scientists have observed that when levels of carbon dioxide in the atmosphere rise, most plants do something unusual: They thicken their leaves.


Designing a more productive corn able to cope with future climates

An international research team has found they can increase corn productivity by targeting the enzyme in charge of capturing CO2 from the atmosphere.


‘Turbocharging’ photosynthesis increases plant biomass

Scientists from the Boyce Thompson Institute (BTI) and Cornell have boosted a carbon-craving enzyme called RuBisCO to turbocharge photosynthesis in corn. The discovery promises to be a key step in improving agricultural efficiency and yield, according to their esearch published in Nature Plants