Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Maize from El Gigante Rock Shelter shows early transition to staple crop

Mid-summer corn on the cob is everywhere, but where did it all come from and how did it get to be the big, sweet, yellow ears we eat today? Some of the answers come from carbon dating ancient maize and other organic material from the El Gigante rock shelter in Honduras, according to a team of anthropologists who show that 4,300 years ago maize was sufficiently domesticated to serve as a staple crop in the Honduran highlands.

"Staple crops provide the basis for the development of many complex societies around the world that started developing after about 5,000 years ago," said Douglas J. Kennett, head and professor of anthropology, Penn State. "They are associated with a complete commitment to agriculture."

Maize, or corn in North America, is an important food and fuel crop. The evolutionary history of such a staple is important and archaeological sites with well-preserved maize are incredibly rare, according to Kennett.

The abundance of artifacts and the exceptionally good preservation in the rock shelter that sits on the western escarpment of the Estanzuela River in the highlands of western Honduras make it an ideal site to explore domestication of maize and its transition into a staple crop in the New World. High-precision accelerator mass spectrometry -- radiocarbon dating -- allowed a precise chronology to be determined for the organic remains found in the rock shelter.

"When you walk across the surface of the rock shelter, the floor is covered with corn cobs and lithics," said Ken Hirth, professor of anthropology, Penn State. "We have about 10,000 pieces of maize plants and 1,000 cobs from the site."

Most researchers agree that maize evolved from the teosinte plant somewhere in the Balsas area of the southwestern region of Mexico and appeared around 9,000 years ago. But the original maize cobs had few rows and kernels.

"The maize in El Gigante is interesting because of how large it gets very quickly," said Hirth. "Something is going on in the margins of the area. These cobs are bigger than those known from other areas of Mexico for the same time period."

While a type of teosinte exists in the area of El Gigante, it is not one that hybridizes with maize.

"We hypothesize that the domestication history of maize in Honduras is distinct from Mexico because Honduras is well outside the range of the wild plant that maize was domesticated from," said Kennett. "There is known introgression (hybridization and backcrossing) between teosinte and maize and this could have slowed the domestication process in Mexico."

According to Kennett, based on the small cobs from Mexico, researchers thought that the transition to more complex societies in Mesoamerica 4,000 years ago occurred before maize was a fully domesticated staple crop.

Data from El Gigante now suggests that maize in some parts of Mesoamerica was productive enough to be a staple 4,300 years ago, the researchers report in Proceedings of the National Academy of Sciences.

The researchers radiocarbon dated 88 samples of botanical material from El Gigante, creating a statistical chronology over the past 11,000 years. They directly dated 37 cobs that showed the earliest cobs with 10 to 14 rows, a higher number than typically found in Mexico at this time. Dated cobs from 2,360 to 980 years ago were similar, but had larger cobs and kernels and more rows.

Logan Kistler, a researcher at the Smithsonian Institution and a coauthor on this paper, is currently working with the team on an ancient DNA study to determine if the earliest El Gigante maize was fully domesticated. Recent studies on cobs from the Tehuacan Valley dating to approximately 5,300 years ago -- 1,000 years older than the El Gigante cobs -- indicate that those plants were only partially domesticated.

The researchers also are now looking at the diversification of maize at El Gigante in later time periods.

Read the paper: High-precision chronology for Central American maize diversification from El Gigante rockshelter, Honduras.

Article source: Penn State.

Image credit: Thomas Harper

News

Shallow soils promote savannas in South America

New research suggests that the boundary between South American tropical rainforests and savannas is influenced by the depth to which plants can root. Shallow rooting depth promotes the establishment of savannas. Previous research has shown that precipitation and fire mediate tropical forest and savanna distributions. The study shows that below ground conditions need to be considered to understand the distribution of terrestrial vegetation both historically and in the face of future climate change. The study by researchers of the Senckenberg Biodiversity and Climate Research Centre and Goethe University is based on computer vegetation models and was published in the Journal of Biogeography.


Living mulch builds profits and soil

Living mulch functions like mulch on any farm or garden except -- it's alive. No, it's not out of the latest horror movie; living mulch is a system farmers can use to benefit both profits and the soil. While the system has been around for a while, scientists at the University of Georgia are making it more efficient and sustainable.


Sequencing of stevia plant genome revealed for first time by Purecircle Stevia Institute

For the first time, scientists have completed the sequencing of the stevia plant genome. Lead scientists from PureCircle Stevia Institute and KeyGene have unveiled this major breakthrough in research showing the annotated, high-quality genome sequences of three stevia cultivars.