GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Lupin roots observed in the act of drinking

Soil scientists led by Prof. Sascha Oswald from the University of Potsdam regularly conduct experiments at the BER II neutron source. This is because neutrons are superbly suited for observing the transport of water in soil and plant roots. In addition, the scientists also use deuterated heavy water that can be differentiated from ordinary water extremely well by neutrons. At least an hour of instrument time was previously necessary to generate a detailed three-dimensional mapping of the water distribution using neutron tomography at the CONRAD-2 imaging facility. The scientists have now broken with the paradigm that a subject should move as little as possible during the recording process, as is also the rule in photography. They permitted the lupin plants to rotate slowly but completely within a cylinder of soil while a successive series of extremely brief images were made. The team is now able to conduct this type of 3D mapping during a period of only ten seconds thanks to precision technical modifications in CONRAD-2 carried out by HZB experts Dr. Nikolay Kardjilov and Dr. Ingo Manke.

These modifications enabled the researchers from the University of Potsdam to observe for the first time in 3D how water rises upwards in the soil and thus how the roots absorb it. "At this temporal resolution it had only been possible thus far to look through a stationary sample cross-section, i.e. in 2D", explains Dr. Christian Tötzke, first author of the study that has now been published in Scientific Reports. The findings extend our understanding of the interactions between roots and soil, which could even affect breeding and cultivation of these kinds of agricultural crops. And the new recording technology, which is a good 100-times faster than before, could also enable fast processes in other samples to be observed in real time, such as in fuel cells, batteries, and construction materials.

Read the paper: Capturing 3D Water Flow in Rooted Soil by Ultra-fast Neutron Tomography.

Article source: Helmholtz Zentrum Berlin für Materialien und Energie.

Image credit: Christian Tötzke, University of Potsdam


Forty years of data quantifies benefits of Bt corn adoption across multiple crops for the first time

University of Maryland researchers have pulled together forty years of data to quantify the effects of Bt field corn, a highly marketed and successful genetically engineered technology, in a novel and large-scale collaborative study. Other studies have demonstrated the benefits of Bt corn or cotton adoption on pest management for pests like the European corn borer or cotton bollworm in corn or cotton itself, but this is the first study to look at the effects on other offsite crops in North America. By tracking European corn borer populations, this study shows significant decreases in adult moth activity, recommended spraying regimens, and overall crop damage in vegetable crops such as sweet corn, peppers, and green beans. These benefits have never before been documented and showcase Bt crops as a powerful tool to reduce pest populations regionally thereby benefitting other crops in the agricultural landscape.

A lesson from Darwin on marine ecosystems

When British naturalist Charles Darwin traveled to the Galapagos Islands in 1835, he took notice of the giant kelp forests ringing the islands. He believed that if those forests were destroyed, a significant number of species would be lost. These underwater ecosystems, Darwin believed, could be even more important than forests on land.

Climate change risk for half of plant and animal species in biodiversity hotspots

Up to half of plant and animal species in the world's most naturally rich areas, such as the Amazon and the Galapagos, could face local extinction by the turn of the century due to climate change if carbon emissions continue to rise unchecked.