GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Linking virus sensing with gene expression, a plant immune system course-corrects

Plant immune systems, like those of humans and animals, face a difficult balancing act: they must mount responses against ever-evolving pathogens, but they must not overdo it. Immune responses require energy and resources and often involve plants killing their own infected cells to prevent the pathogens from spreading.

Researchers at Durham University in the UK have identified a crucial link in the process of how plants regulate their antiviral responses. The research is published in the Journal of Biological Chemistry.

Martin Cann's lab at Durham, in collaboration with the laboratories of Aska Goverse at Wageningen University and Frank Takken at the University of Amsterdam, studied a receptor protein called Rx1, which is found in potato plants and detects infection by a virus called potato virus X.

Binding to a protein from the virus activates Rx1 and starts a chain of events that results in the plant mounting an immune response. But the exact sequence of cellular events - and how Rx1 activation was translated into action by the rest of the cell - was unknown.

"Our study revealed an exciting, and unexpected, link between pathogen attack and plant DNA," Cann said.

Specifically, the study showed that Rx1 joins forces with a protein called Glk1. Glk1 is a transcription factor, meaning it binds to specific regions of DNA and activates genes involved in cell death and other plant immune responses. The team found that when Glk1 bound to virus-activated Rx1, it was able to turn on the appropriate defense genes.

Interestingly, when the viral protein was absent, Rx1 seemed to have the opposite effect - actually keeping Glk1 from binding to DNA. In this way, it prevented an inappropriate immune response.

"(T)he immune response involves reprogramming the entire cell and also often the entire plant," Cann said. "(A)n important part of this regulatory process is not only allowing activation but also making sure the entire system is switched off in the absence of infection."

As over a third of the annual potential global crop harvest is lost to pathogens and pests, breeding plants with better immune systems is an important challenge. Understanding how this immune system is regulated at the appropriate level of activity gives the researchers more ideas of points in the immune signaling pathway that could targeted to increase the plant's baseline ability to resist disease.

"To increase (crop) yield, there is an urgent need for new varieties that are resilient to these stresses," Cann said. "A mechanistic understanding of how plants resist or overcome pathogen attack is crucial to develop new strategies for crop protection."

Read the paper: The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor.

Article source: American Society for Biochemistry and Molecular Biology.


Flood, drought and disease tolerant -- one gene to rule them all

An international collaboration between researchers at the University of Copenhagen, Nagoya University and the University of Western Australia has resulted in a breakthrough in plant biology. Since 2014, the researchers have worked on identifying the genetic background for the improved flood tolerance observed in rice, wheat and several natural wetland plants. In a New Phytologist, article, the researchers describe the discovery of a single gene that controls the surface properties of rice, rendering the leaves superhydrophobic.

Plants overcome hunger with the aid of autophagy

Researchers at Tohoku University have found that plants activate autophagy in their leaf cells to derive amino acids that are used for survival under energy-starved "hunger" conditions. The findings show that amino acid utilization in plants can be controlled by the manipulation of autophagy.

The Alps are home to more than 3,000 lichens

Historically, the Alps have always played an emblematic role, being one of the largest continuous natural areas in Europe. With its numerous habitats, the mountain system is easily one of the richest biodiversity hotspots in Europe.