Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Life in the fast lane: Ecologist says dispersal ability linked to plants' life cycles

Though mostly rooted in the ground, plants have a number of innovative ways to disperse their seeds and get on with the business of propagation. They drop seeds or release them to the wind. Or they fling seeds with a dramatic mechanical detonation. Or they rely on seed transport by water or hitching a ride on a traveling animal (including humans).

"Seed dispersal is an essential, yet overlooked process of plant demography," says Utah State University ecologist Noelle Beckman. "But it's difficult to empirically observe, measure and assess its full influence."

To that end, Beckman, with colleagues James Bullock of the United Kingdom's Centre for Ecology & Hydrology and Rob Salguero-Gómez of the University of Oxford, used the massive COMPADRE Plant Matrix Database, an online repository containing demographic information about thousands of plant species throughout the world, to analyze hundreds of disparate datasets of plant life-history strategies.

The team reports their findings in the Journal of Ecology. Their paper is part of a special British Ecological Society cross-journal feature that provides an overview of forces and mechanisms producing worldwide plant and animal diversity. Their research was supported by the National Science Foundation, the Centre for Ecology & Hydrology, the Australian Research Council and the U.K.'s Natural Environment Research Council.

"Our analyses revealed plant life-history strategies are largely explained by growth, survival and reproduction, and by how far plants disperse their seeds," says Beckman, assistant professor in USU's Department of Biology and the USU Ecology Center. "

The scientists found dispersal ability is related to fast life histories with maximum dispersal distances positively related to high reproductive rates, a long window of reproduction and a low likelihood of escaping senescence or growing old.

"The faster the life history, the farther distances seeds are dispersed," Beckman says. "This may allow the species to take advantage of environments that vary unpredictably."

Dispersal, she says, is a central process in ecology and evolution.

"Movement of individual plants affects genetic diversity and species' capacity for adaptation," Beckman says. "Global changes, such as climate change or landscape fragmentation, that disrupt dispersal have consequences. With analytical tools, we can examine these consequences on plant performance, spatial patterns, population spread and biodiversity."

Read the paper: High dispersal ability is related to fast life‐history strategies.

Article source: Utah State University.

Image credit: Utah State University

News

Hot temperatures can trigger an RNA response in plants

The stress of hotter temperatures may trigger a response in a plant's RNA, or ribonucleic acid — part of a cell's genetic messaging system — to help manage this change in its environment, according to a team of Penn State researchers.


Study provides whole-system view of plant cold stress

When temperatures drop, plants can’t bundle up. Stuck outside, exposed, plants instead undergo a series of biochemical changes that protect cells from damage. Scientists have described these changes and identified some of the genes controlling them, but it’s not clear how all the processes work together. Lacking this global view, plant breeders have struggled to engineer cold-tolerant crops.


Photosynthesis Like a Moss

Moss evolved after algae but before vascular land plants, such as ferns and trees, making them an interesting target for scientists studying photosynthesis, the process by which plants convert sunlight to fuel. Now researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have made a discovery that could shed light on how plants evolved to move from the ocean to land.