Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Inequality is normal: Dominance of the big trees

The top 1% of the forest has been sharing some vital information with researchers. Ninety-eight scientists and thousands of field staff have concluded the largest study undertaken to date with the Smithsonian Forest Global Earth Observatory (ForestGEO), and what they have found will have profound implications toward ecological theories and carbon storage in forests. Rather than examining tree species diversity in temperate and tropical ecosystems, this global study emphasized forest structure over a vast scale. Using large forest plots from 21 countries and territories, Utah State researchers found that, on average, the largest 1% of trees in mature and older forests comprised 50% of forest biomass worldwide. Furthermore, the amount of carbon that forests can sequester depends mostly on the abundance of big trees. The size of the largest trees was found to be even more important to forest biomass than high densities of small and medium trees. Lead author Jim Lutz, Assistant Professor at Utah State University said, "Big trees provide functions that cannot be duplicated by small or medium-sized trees. They provide unique habitat, strongly influence the forest around them, and store large amounts of carbon."

This study has shown that the structure of the forest is as important to consider as species diversity - the largest trees follow their own set of rules. Using 48 of the large forest dynamics plots from around the world coordinated by the Smithsonian ForestGEO Program, scientists were able to examine the variability of forest structure on a consistent basis. Co-author Dan Johnson, Research Associate at Utah State University said, "Having a worldwide group of scientists following the same methods offers us unique opportunities to explore forests at a global scale. This is a really wonderful group of scientists united by a passion for deepening our understanding of forests."

Tropical forests are well known to typically have many more species than temperate forests. However, this study found that temperate forests have higher structural complexity, both in terms of different tree sizes within an area and also between adjacent areas of forest. Co-lead author Tucker Furniss, PhD student at Utah State University said, "The distribution of big trees has not been well explained by theory. Our results emphasize the importance of considering these rare, but disproportionately important ecosystem elements. We clearly need more applied and theoretical research on these important big trees."

The researchers also found that the largest trees are representatives of the more common tree species. The ability of some trees in any given forest to reach very large sizes relative to the other trees and concentrate resources seems to be a global phenomenon. "Big trees are special." Continued Lutz. "They take a long time to regrow if they are eliminated from a forest. Making sure that we conserve some big trees in forests can promote and maintain all the benefits that forests provide to us."

Read the paper: Global importance of large‚Äźdiameter trees.

Article source: Utah State University.

Image credit: James Lutz/Utah State University

News

Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.


How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.


VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.