Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


In Frontiers in Plant Science: New insight into why Pierce's disease is so deadly to grapevines

Scientists are gaining a better understanding of Pierce's disease and how it affects grapevines. The disease, which annually costs California more than $100 million, comes from a bacterium called Xylella fastidiosa. While the bacterium has been present in the state for more than 100 years, Pierce's disease became a more serious threat to agriculture with the arrival of the glassy-winged sharpshooter insect, which can carry the bacterium from plant to plant.

In a new study, published in Frontiers in Plant Science, researchers at the University of California, Davis, have identified a set of molecular markers that influence the onset of Pierce's disease in grapevines.

"We now have a very good idea of the plant responses to the disease," said lead author Paulo Zaini, a postdoctoral researcher in the Department of Plant Sciences at UC Davis. "This will help us in early diagnosis and help us design strategies to protect the plant from damaging itself."

HOW INFECTION DEVELOPS

The glassy-winged sharpshooter injects the Xylella fastidiosa bacterium into the plant's xylem, which is the part of the plant that carries water. The disease causes leaves to yellow or "scorch," eventually drying up and dropping from the vine. It can kill a plant in three to five years. Few diseases can kill grapevines so quickly.

The glassy-winged sharpshooter was first reported in California in 1994 and can travel greater distances than native sharpshooters. By 2002, the glassy-winged sharpshooter had infested more than 1,100 acres of grapevines statewide.

"What growers do to stop the bug is just apply insecticides at an increasingly growing rate," said Zaini. "It's not a sustainable strategy."

In this study the authors looked at the plant's responses to the disease compared to healthy plants. Better understanding the biochemical changes with onset of the disease can help foster new strategies to increase plant health, rather than having to use insecticides to fight disease.

Scientists have long thought the bacteria growing in the xylem blocked the flow of water to the leaves.

"We thought that the blockage causes a drought stress, but there's much more to it than that." said Abhaya Dandekar, professor of plant sciences and the study's principal investigator. "Not all the vessels are blocked."

The blockage might be part of the problem, but it doesn't answer all the questions. More than 200 plant species harbor the bacterium but are asymptomatic.

Having identified molecular markers important for Pierce's disease in grapevines, researchers can use them to study grapevine varieties or other plants that do not develop disease.

Read the paper: Molecular Profiling of Pierce’s Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection.

Article source: UC Davis.

Image credit: University of California

News

Origins and spread of Eurasian fruits traced to the ancient Silk Road

Studies of ancient preserved plant remains from a medieval archaeological site in the Pamir Mountains of Uzbekistan have shown that fruits, such as apples, peaches, apricots, and melons, were cultivated in the foothills of Inner Asia. The archaeobotanical study, conducted by Robert Spengler of the Max Planck Institute for the Science of Human History, is among the first systematic analyses of medieval agricultural crops in the heart of the ancient Silk Road. Spengler identified a rich assemblage of fruit and nut crops, showing that many of the crops we are all familiar with today were cultivated along the ancient trade routes.


Play-Doh helps plant research

When plants are in distress or being fed on by insects, they have been known to send out sensory volatile cues that alert organisms in the area -- such as birds -- that they are in need of help. While research has shown that this occurs in ecosystems such as forests, until now, this phenomenon has never been demonstrated in an agricultural setting.


Model way to protect trees

Oak processionary moth and ash dieback are among the most notorious tree pests and diseases intro-duced into the UK. And many exotic pests and diseases are suspected of having been introduced, or are known to have been introduced, through the import of commercial tree planting material.