Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Hydrogen peroxide assists sexual reproduction in spruce

Plant physiologists from Moscow State University (MSU) proved for the first time that dangerous reactive oxygen species that are often considered as by-products of energy generation in cells, are required by the conifers to fertilize the egg cell. Experiments with pollen of blue spruce (Picea pungens) helped to find a protein that makes the whole system work. The scientists believe that the obtained data will lead to the optimization of conifer forests restoration. The results of the study were published in the Plant Reproduction journal.

"The study of sexual reproduction in conifers is on its early stage, and many of it`s aspects are practically unknown," - says the co-author of the article Maria Breygina, a senior scientific researcher at the department of plant physiology, Faculty of Biology, MSU, and a scientific fellow of the electrophysiology lab at Pirogov Russian National Research Medical University. - "These studies are of high fundamental importance, as the pollen of conifers is a more ancient object with directional growth compared to that of flowering plants."

Flowering plants have flowers with stamens distributing the pollen and pistils where it has to get for fertilizing. Cross pollination is usually more advantageous for a plant, as it helps to increase genetic diversity. The seeds in flowering plants are formed inside an ovary which, in turn, forms a fruit (that is why flowering plants are also called angiosperms). However, gymnosperms (of which conifers are the best-known group) also have mechanisms for cross pollination. In conifers these are cones that are actually modified sprouts. The cones of conifers are diclinous; male ones are relatively small and produce pollen that is distributed by wind, and female ones are bigger and form seeds. After reaching the female cone, pollen sticks to special liquid (in pines and spruce) or small hairs (as in Douglas fir).

Having landed in the right place (on a pistil in flowering plants or under a seed scale in gymnosperms), pollen starts to grow forming a pollen tube. Through this tube sperm cells reach to egg cell to fertilize it. In flowering plants the second sperm fuses with a central cell to form endosperm (a nutritional part of the seeds, for example, as in wheat seeds). That is why this fertilization type is called double fertilization.

All these processes were described long ago, but modern science is focused on their molecular and biochemical aspects. It has been recently established that reactive oxygen species (ROS) play a key role in pollen germination in angiosperms. ROS are neutral or negatively charged particles in which oxygen has an unpaired electron. ROS include peroxides (in particular, hydrogen peroxide) and radicals, such as superoxide radical O2-.

An unpaired electron makes ROS highly reactive. If a lot of ROS is formed within a cell, the consequences may be severe. These compounds may affect the balance of complex biochemical reactions, damage membranes, DNA, and other parts of cells. That is why, regardless of their origin, ROS are often considered dangerous by-products that need to be neutralized as quickly as possible. Still, certain cells synthesize them in small quantities and use as a messenger. Due to the ambiguous nature of these compounds, it is extremely important to study the useful functions of ROS, such as their role in plant fertilization.

Plant physiologists from MSU were the first to study the role of ROS in pollen germination in conifers (namely, blue spruce) and found out that pollen grains secrete hydrogen peroxide and O2- into the environment before germinating. Later on hydrogen peroxide gradient is formed in the pollen tube, i.e. its concentration is increased in the tip. This gradient seems to be necessary for the tube to grow to the egg cell, as well as to support the membrane potential (negative charge) gradient (which is described in conifers for the first time), though these gradients do not seem to be related directly.

The scientists also found out what protein regulates this process. It turned to be NADPH-oxidase located in cell membranes. This protein is in charge of moving electrons out of the cell and the formation of extracellular superoxide. ROS interconvert quite quickly, O2- turns into peroxide that re-enters the cell. Due to this process hydrogen peroxide is distributed gradiently in the pollen tube. Experiments have shown that after NADPH oxidase suppression pollen grains do not germinate, and pollen tubes become unable to grow. Therefore, fertilization doesn't take place.

"The results of this and further studies may be used to optimize forest restoration, especially fir trees, cedars, pines, and silver-firs, as well as their selection and forming a collection of forest breeds in Russia," -- commented Maria Breygina.

Read the paper: The role of reactive oxygen species in pollen germination in Picea pungens (blue spruce).

Article source: Moscow State University.

Image credit: Maria Breygina

News

Nuclear events make a flower bloom

Flowers do more than give plants beautiful lovely colors and fragrances. They are the reproductive organs of the plant. Their formation depends on strict nuclear events that if compromised can leave the plant sterile. A new study by researchers at the Nara Institute of Science and Technology (NAIST) shows how two transcription factors, AGAMOUS and CRABS CLAW, bind sequentially to the gene YUC4, which is responsible for synthesizing the plant hormone auxin. The findings, which can be read in Nature Communications, provide an epigenetic explanation for proper formation of the gynoecium, the female reproductive organ of flowering plants.


Flower power with the family

For centuries, people have conveyed feelings of happiness and love with flowers. Now an EU research team has found that plants flower more when surrounded by relatives compared to when growing with strangers or alone.


Nature's 'laboratory' offers clues on how plants thrive through genetic diversity

Scientists have turned to nature’s own ‘laboratory’ for clues about how plants adapt in the environment to ensure their own survival.