Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


How soil dwelling bacteria adapt to richer or poorer conditions in marriage of convenience with plants

Scientists have identified a unique mechanism that the soil dwelling bacterium Pseudomonas fluorescens uses to effectively exploit nutrients in the root environment.

The breakthrough offers multiple new applications, according to the team of John Innes Centre scientists behind the discovery: for the study of human pathogens, for synthetic biology, and for the productions of biosensors which help detect biological changes in plants and their environment.

P. fluorescens is a common soil bacteria that colonises plant roots, entering into a "marriage of convenience," where it improves plant health in return for exuded nutrients from the plant.

The team at the John Innes Centre, Norwich, showed how the "twin" transcriptional factors HexR and RccR can remodel central carbon metabolism in P. fluorescens, enabling the bacterium to adapt to its surroundings.

The paper is published in the journal PLOS Genetics. The study provides a fundamental new insight into how bacteria tune their metabolic responses to available nutrients.

In particular, the RccR protein employs a unique and sophisticated two-way switch that enables it to simultaneously suppress and activate the expression of different genes.

Dr Jacob Malone, a project leader at the John Innes Centre said: "The RccR protein functions in a completely different way to conventional regulators of this type. Virtually every regulator we know of operates via an on-off switch -- it either binds to DNA or it doesn't. RccR on the other hand uses an either-or switch. The principles underpinning RccR function make it an incredible tool for use as a biosensor, and have lots of potential for use in synthetic biology and the production of a new generation of genetic circuits."

The study not only explains how P. fluorescens adapts its metabolism to exploit nutrients secreted by plant roots, but it also suggests medical applications.

The report co-author Rosaria Campilongo, a research assistant at the John Innes Centre, explained how her findings can be applied to the study of the human pathogen Pseudonomas aeruginosa, a major factor in cystic fibrosis lung infection: "The RccR system is shared by all Pseudomonas species, including human pathogens. This means that characterising RccR in P. fluorescens may open new insights into the pathogenesis and potential treatment of P. aeruginosa."

Read the paper: One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas.

Article source: John Innes Centre.

Image credit: Okea / Fotolia

News

New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.


Europe's lost forests: Coverage has halved over 6,000 years

More than half of Europe's forests have disappeared over the past 6,000 years thanks to increasing demand for agricultural land and the use of wood as a source of fuel, new research led by the University of Plymouth suggests.


The circadian clock sets the pace of plant growth

The recent award of the Nobel Prize in Physiology or Medicine to the three American researchers Hall, Rosbash and Young for their "discoveries of molecular mechanisms controlling the circadian rhythm" has greatly popularized this term -which comes from the Latin words "circa" (around of) and "die" (day)-. Thanks to the discoveries that these scientists did using the fruit fly, today we know that the organisms have an internal clock built of a set of cellular proteins whose amount oscillates in periods of 24 hours. These oscillations, which are autonomously maintained, explain how living organisms adapt their biological rhythm so that it is synchronized with the Earth's revolutions.