Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


How Plants Form Their Seeds

Vegetable, fruit, or grain – the majority of our food results from plant reproduction. Researchers at the University of Zurich (UZH) have now discovered the key to how plants regulate pollen growth and seed formation. In addition to seed formation, knowledge about these signaling pathways can be used to influence plant growth or their defense against pests.

Around 80 to 85 percent of our calorie needs is covered through seeds, either directly as food or indirectly through use as feed. Seeds are the result of plant reproduction. During the flowering period, the male and female tissues interact with each other in a number of ways. When pollen lands on the flower’s stigma, it germinates and forms a pollen tube, which then quickly grows towards the plant’s ovary. Once it finds an ovule, the pollen tube bursts to release sperm cells, which fertilize the ovule and initiate seed formation.

Pollen tube interacts with female plant tissue

Led by Ueli Grossniklaus, professor at the Department of Plant and Microbial Biology at the University of Zurich, an international research team has now demonstrated how the pollen tube interacts with, and responds to, female plant tissue. The pollen tube does so by secreting extracellular signals (RALF peptides) which it uses to explore its cellular environment and regulate its growth. Two receptors on the cell’s surface enable it to perceive the secreted signals and transmit them to the inside of the cell.

Intracellular signals regulate growth

Working together with the teams of Christoph Ringli from UZH and Jorge Muschietti from the University of Buenos Aires, the team around Grossniklaus was able to determine that further proteins had to be active for the pollen tube to recognize the signals – LRX proteins. These proteins were identified at UZH 15 years ago by Beat Keller and his research group, but their function had previously not been clear. LRX proteins are localized in the cell wall surrounding plant cells, where the signals can dock. “We suspect that the pollen tube explores changes in the cell wall by sending out signals and responding accordingly, for example by realigning its growth,” says Ueli Grossniklaus. It is rare for plants to produce and perceive signals with the same cells. The researchers suspect that this allows the pollen tube, which grows extremely quickly, to faster respond to changes in its environment rather than being dependent on signals from other neighboring cells.

Molecular insights open up wide range of potential applications

The signaling pathways described by the researchers are involved in many other basic processes, and knowledge of how they work opens up numerous possible applications for plant breeding. “By better understanding how these proteins work, we can not only influence pollination and seed formation, but also the development and growth of plants or their defense against pests,” concludes Ueli Grossniklaus.

Read the paper: RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis.

Article source: University of Zurich.

Image credit: University of Zurich

News

New 'Buck' naked barley: Food, feed, brew

Researchers at Oregon State University (OSU) are giving an ancient grain a new life: this barley is naked, but not in an indecent way.


Clean and green: A moss that removes lead (Pb) from water

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) in Japan have demonstrated that that moss can be a green alternative for decontaminating polluted water and soil. Published in PLOS One, the study shows that in particular, the moss Funaria hygrometrica tolerates and absorbs an impressive amount of lead (Pb) from water.


New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.