GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.

Now, Keisuke Yoshida, Toru Hisabori and colleagues have identified two proteins, constituting the thioredoxin-like2 (TrxL2)/2-Cys peroxiredoxin (2CP) redox cascade, that help control the reoxidation of these photosynthetic proteins by modifying key parts of the molecular players. These two proteins appear to function as part of a cascade that siphons energy from the photosynthetic proteins to the always energy-hungry hydrogen peroxide. TrxL2, unlike similar, better-known proteins, seems to be specialized for the 'switching off' process; it's an efficient oxidizer of many proteins, but only reduces 2CP, allowing the energy drained by TrxL2 from several upstream reactions to pass to 2CP and thence hydrogen peroxide. This cascade thus keeps photosynthesis on standby until light is available again.

TrxL2/2CP do work in light as well, but are overshadowed by the normal activation machinery in plants and only take center stage in the absence of light. Interestingly, this cascade does not seem to affect photosynthesis itself, as mutant plants without 2CP behave normally in light; however, the 'switching off' mechanism is significantly less efficient in these mutant plants than in wild-type plants. Moreover, the fact that this process is less efficient, rather than absent altogether, suggests that other, as yet unknown, proteins serve similar functions in plants. These researchers thus shed light on how plants reserve the activity of photosynthetic proteins for when it's actually useful.

Read the paper: Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts.

Article source: Tokyo Institute of Technology.

Image credit: Toru Hisabori


Local plant-microbe alliances shape global biomes

Dense rainforests, maple-blanketed mountains and sweeping coniferous forests demonstrate the growth and proliferation of trees adapted to specific conditions. The regional dominance of tree species we see on the surface now, however, might actually have been determined underground long ago.

Pre-Crop Values from Satellite Images to Support Diversification of Agriculture

Pre-crop values for a high number of previous and following crop combinations originating from farmers’ fields are, for the first time, available to support diversification of currently monotonous crop sequencing patterns in agriculture. The groundbreaking method utilizing satellite images was developed by Natural Resources Institute Finland (Luke) in collaboration with Finnish Geospatial Research Institute (FGI).

Editing of RNA may play a role in chloroplast-to-nucleus communication

What will a three-degree-warmer world look like? How will plants fare in more extreme weather conditions? When experiencing stress or damage from various sources, plants use chloroplast-to-nucleus communication to regulate gene expression and help them cope.