Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Harnessing plant hormones for food security in Africa

Striga hermonthica, also known as purple witchweed, is an invasive parasitic plant that threatens food production in sub-Saharan Africa. It is estimated to ruin up to 40 per cent of the region's staple crops, the equivalent of $7-10 billion, putting the livelihoods and food supplies of 300 million people in danger.

Striga has an Achilles' heel: it's a parasite that attaches to the roots of other plants. If it can't find a host plant to attach to, it dies. Scientists have found a way to exploit Striga's Achilles' heel to eradicate it from farmers' fields.

Salim Al-Babili, associate professor of plant science at the King Abdullah University of Science and Technology, and colleagues found that they could trick Striga seeds that a host plant was growing nearby. When conditions are right, the Striga seeds germinate, but without a host plant to attach to, they cannot survive.

The scientists take advantage of plant hormones called strigolactones, which are exuded by plant roots. It is these hormones that trigger Striga seeds to germinate. By treating bare crop fields in Burkina Faso with artificial strigolactones, the scientists found that they were able to reduce the number of Striga plants by more than half.

The scientists' solution can be applied to crop fields over the course of a crop rotation, and doesn't require additional water - the treatment begins to work when the rains fall. This has obvious advantages in a region where water is scarce. Al-Babili has been awarded a $5 million grant by the Bill & Melinda Gates Foundation to continue developing real-world solutions to the Striga problem.

This new method will allow farmers and scientists to work together to combat the spread of the invasive Striga plant and help protect the food security of 300 million people in sub-Saharan Africa.

Read the paper: Plants People Planet

Image Credit: Wikimedia

News

Rice blast fungus study sheds new light on virulence mechanisms of plant pathogenic fungi

Rice blast fungus (Magnaporthe oryzae) is a global food security threat due to its destruction of cultivated rice, the most widely consumed staple food in the world. Disease containment efforts using traditional breeding or chemical approaches have been unsuccessful as the fungus can rapidly adapt and mutate to develop resistance. Because of this, it is necessary to understand fungal infection-related development to formulate new, effective methods of blast control.


Rare crops crucial to protect Europe’s food supply, boost health

Rye bread or porridge oats may not be everyone’s first choice of breakfast, but scientists say Europeans need to broaden their taste in cereals both to boost their own health and to protect the future of Europe’s farming.


New research accurately predicts Australian wheat yield months before harvest

Topping the list of Australia’s major crops, wheat is grown on more than half the country’s cropland and is a key export commodity. With so much riding on wheat, accurate yield forecasting is necessary to predict regional and global food security and commodity markets. A new study published in Agricultural and Forest Meteorology shows machine-learning methods can accurately predict wheat yield for the country two months before the crop matures.