Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Greater understanding of plant hormone results in stem cells that grow shoots

Researchers at Dartmouth College have identified how a well-known plant hormone targets genes to regulate plant growth and development. The finding could allow scientists to establish organ-growing stem cells for grains like rice and corn, and may ultimately lead to solutions to stubborn agricultural problems.

The study, appearing in the Proceedings of the National Academy of Sciences, describes how cytokinin activates the transcription factor ARR10 to control gene expression in the Arabidopsis plant - a member of the mustard family commonly used as a model in plant biology.

Cytokinin is a hormone that regulates numerous processes in plants, including cell division, growth of shoots and roots, grain yield and greening.

"The question has always been how cytokinin regulates so many different processes within a plant," said Eric Schaller, a professor of biological sciences at Dartmouth College. "Now we know the genes that are the primary targets of cytokinin, and we can provide the toolbox for manipulating the plant hormone response."

According to the paper, results from the analysis "shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, the mechanism of type-B ARR activation, and the basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors."

As part of the study, conducted in collaboration with the University of North Carolina Charlotte and the University of North Carolina at Chapel Hill, researchers were able to use the new understanding of how cytokinin works to grow shoots in tissue culture under conditions in which these plant organs normally do not form.

To make the plant tissues grow shoots in vitro, the research team increased the cytokinin sensitivity in the Arabidopsis plant. This resulted in activation of the WUSCHEL target gene, which is a key regulator of shoot development. The result confirms understanding of how to establish stem cells that lead to different types of organ growth.

"What we have done is activate the plant to make a stem cell center for a shoot to form," said Schaller. "By finding the direct targets of what is impacted by cytokinin, we can fine-tune our focus in the future."

According to Schaller, this research sets the stage for further work that could help improve yield of important agricultural products like rice and corn.

Read the paper.

Article source: Dartmouth College.

News

Harvard forest report: Forests, funding, and conservation in decline across New England

New England has been losing forestland to development at a rate of 65 acres per day, according to a new report released by the Harvard Forest, a research institute of Harvard University, and a team of authors from across the region. Public funding for land protection has also been steadily declining in all six New England states and is now half what it was at its 2008 peak; with land conservation trends following suit.


Plant physiology: Adjusting to fluctuating temperatures

Later leaf emergence, earlier leaf loss: A new study of Ludwig-Maximilians-Universitaet (LMU) in Munich shows that the average vegetation periods of trees and shrubs in North America are intrinsically three weeks shorter than those of comparable species in Europe and Asia.


More mouths can be fed by boosting number of plant pores

Scientists at Institute of Transformative Bio-Molecules (ITbM), Nagoya University have synthesized a new bioactive small molecule that has the ability to increase stomata numbers on flowering plants without stunting their growth. The team’s new discovery could help elucidate the stomatal development mechanism in plants.