Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Global warming increases wildfire potential damages in Mediterranean Europe

A study published in Nature Communications, led by researchers of the University of Barcelona in collaboration with other research institutions, shows that anthropogenic warming will increase the burned areas due fires in Mediterranean Europe, and the increase of the burned area could be reduced by limiting global warming to 1.5 ºC. The higher the warming level is, the larger the increase of the burned area is.

“To draw this conclusion we combined regional climate projections with several empirical models linking the summer burned area to key climatic drivers”, notes Marco Turco, UB researcher and first author of the study. “These results support the statement of the Paris Agreement (2015) that reports that limiting the temperature increase to 1.5 ºC would “significantly reduce the risks and impacts of climate change”, says the researcher.

Fire seasons in 2017 and 2018 have been unusually high in several regions in Europe, with large wildfires in Greece, Portugal and Sweden, associated with intense droughts and heatwaves. These fires caused economic and ecological losses, and even human casualties.

Marco Turco and his team used a series of regional climate models to project burned area in Mediterranean Europe, taking into account how the climate-vegetation-fire relationship will change under different scenarios due other factors such as droughts. The authors find that, with a 1.5 º C global warming, the burned area could increase by 40 % compared the projections that do not take into account future warming (mainly in the Iberian Peninsula). If warming is at 3 ºC, it would increase by 100 %.

“These results, combined with the increase in societal exposure to large wildfires in recent years, call for a rethinking of current management strategies. Climate change effects could overcome fire prevention efforts, implying that more fire management efforts must be planned in the near future”, says Marco Turco, researcher in the Group of Analysis of Adverse Weather Situations (GAMA) of the University of Barcelona, led by Carme Llasat, lecturer at the Department of Applied Physics of the UB. In this sense, the development of climate-fire models is crucial to identify key actions in adaptation strategies. In particular, combined with seasonal climate forecasts, these offer an under-exploited opportunity to prevent and reduce the fire impact of climate adverse conditions.

Other collaborators in the study are researchers from the University of Murcia, University of Cantabria, the Institute of Geoscience and Earth Resources (IGG) of the Italian National Research Council and the company Intelligent Data Solutions (Santander).

Read the paper: Nature Communications

Article source: University of Barcelona

Image credit: CCO Public Domain

News

Scientists engineer shortcut for photosynthetic glitch, boost crop growth 40%

Plants convert sunlight into energy through photosynthesis; however, most crops on the planet are plagued by a photosynthetic glitch, and to deal with it, evolved an energy-expensive process called photorespiration that drastically suppresses their yield potential. Researchers from the University of Illinois and U.S. Department of Agriculture Agricultural Research Service report in the journal Science that crops engineered with a photorespiratory shortcut are 40 percent more productive in real-world agronomic conditions.


Should researchers engineer a spicy tomato?

The chili pepper, from an evolutionary perspective, is the tomato's long-lost spitfire cousin. They split off from a common ancestor 19 million years ago but still share some of the same DNA. While the tomato plant went on to have a fleshy, nutrient-rich fruit yielding bountiful harvests, the more agriculturally difficult chili plant went defensive, developing capsaicinoids, the molecules that give peppers their spiciness, to ward off predators.


European wheat lacks climate resilience

The climate is not only warming, it is also becoming more variable and extreme. Such unpredictable weather can weaken global food security if major crops such as wheat are not sufficiently resilient – and if we are not properly prepared.