Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Genomic study reveals clues to wild past of grapes

About 22,000 years ago, as the ice sheets that consumed much of North America and Europe began retreating, humans started to consume a fruit that today brings joy to millions of wine drinkers around the world: grapes.

That's what University of California, Irvine evolutionary biologist Brandon Gaut and UC Davis plant biologist Dario Cantu believe occurred. They compared the sequenced genomes of wild and domesticated Eurasian grapes and found evidence that people may have been eating grapes as many as 15,000 years before they domesticated the fruit as an agricultural crop.

"Like most plants, grapes are typically considered to have been cultivated around 7,000 to 10,000 years ago, but our work suggests that human involvement with grapes may precede these dates," Gaut said. "The data indicate that humans gathered grapes in the wild for centuries before cultivating them. If we are right, it adds to a small but growing set of examples that humans had big effects on ecosystems prior to the onset of organized agriculture."

The study appears online in Proceedings of the National Academies of Sciences.

Today grapes are the most economically important horticultural crop in the world, but in reviewing the evolutionary data, the scientists found that populations of the fruit steadily decreased until the period of domestication, when grapes began to be grown and harvested for wine. The long decline could reflect unknown natural processes, or it may mean that humans began managing natural populations long before they were actually domesticated.

Gaut said the study data also suggest that the altering of several important genes during domestication was a key turning point for the fruit. These genes included some involved in sex determination and others related primarily to the production of sugar. These changes helped define grapes as we know them today and probably contributed to the spreading of the crop throughout the ancient world.

In addition, the researchers discovered that modern grape genomes contain more potentially harmful mutations than did the fruit's wild ancestors. These accumulate due to clonal propagation, which is reproduction by multiplication of genetically identical copies of individual plants. Grapes have been reproduced by clonal propagation for centuries, as it allows genetically identical cabernet sauvignon or chardonnay varieties, for example, to be grown around the globe. The identification of these potentially harmful mutations may prove useful to grape breeders.

Read the paper: Evolutionary genomics of grape (Vitis viniferassp.vinifera) domestication.

Article source: University of California - Irvine.

Image credit: Brandon Gaut / UCI

News

New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.


Europe's lost forests: Coverage has halved over 6,000 years

More than half of Europe's forests have disappeared over the past 6,000 years thanks to increasing demand for agricultural land and the use of wood as a source of fuel, new research led by the University of Plymouth suggests.


The circadian clock sets the pace of plant growth

The recent award of the Nobel Prize in Physiology or Medicine to the three American researchers Hall, Rosbash and Young for their "discoveries of molecular mechanisms controlling the circadian rhythm" has greatly popularized this term -which comes from the Latin words "circa" (around of) and "die" (day)-. Thanks to the discoveries that these scientists did using the fruit fly, today we know that the organisms have an internal clock built of a set of cellular proteins whose amount oscillates in periods of 24 hours. These oscillations, which are autonomously maintained, explain how living organisms adapt their biological rhythm so that it is synchronized with the Earth's revolutions.