Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Gene boosts rice growth and yield in salty soil

Around 20% of the world's irrigated land is considered to contain elevated concentrations of salt, and the soil continues to get saltier as the climate warms. Agricultural production is hard hit by soil salinity; salt stress reduces the growth and yield of most plants, resulting in billions of dollars in crop yield losses annually. Rice--the staple food of more than half the world's population--is particularly sensitive to salty soil, with even moderate levels of salt resulting in substantial yield losses. There is thus an urgent need to develop rice lines that can withstand salty conditions.

A team of scientists led by Jian-Zhong Lin and Xuan-Ming Liu of Hunan University in Changsha, China recently identified a gene that contributes to salt stress tolerance in rice. The gene, which they named STRK1 (salt tolerance receptor-like cytoplasmic kinase 1), was activated under salt stress conditions. The researchers generated two sets of transgenic plants, one in which STRK1 was expressed at high levels, and the other in which expression was greatly reduced. Under regular growth conditions, both sets of transgenic plants appeared normal. However, when challenged with salt, the transgenic plants with elevated STRK1 expression were greener and larger than the non-transgenic control plants, and those with reduced levels of STRK1 expression were smaller and browner than the controls.

Next, the team examined the effect of STRK1 on yield. "Notably, overexpression of STRK1 in rice not only improved growth but also markedly limited the grain yield loss under salt stress conditions," said Jian-Zhong Lin.

The team then turned their attention to deciphering the mechanism by which STRK1 enhances the plant's tolerance to salt. Salt stress triggers the production of potentially harmful reactive oxygen species, such as hydrogen peroxide, in plant cells. The group found that STRK1 (the protein encoded by STRK1) interacts with and activates a protein named CatC, which belongs to a family of proteins that decomposes hydrogen peroxide into water and oxygen. Thus, STRK1 increases the plant's tolerance to salt stress by keeping the levels of hydrogen peroxide in check, and thereby minimizing the damage caused by accumulating reactive oxygen species.

These exciting findings bring the research community closer to developing rice plants that thrive in salty soil. "Agricultural productivity is increasingly threatened by the salinization of irrigated farmland...Our work demonstrates that STRK1 is a promising candidate gene for protection of yield in crop plants exposed to salt stress," stated Xuan-Ming Liu.

Read the paper: The Receptor-like Cytoplasmic Kinase STRK1 Phosphorylates and Activates CatC, thereby Regulating H2O2 Homeostasis and Improving Salt Tolerance in Rice.

Article source: American Society of Plant Biologists.

Image credit: Jian-Zhong Lin

News

New research calculates capacity of North American forests to sequester carbon

Researchers have calculated the capacity of North American forests to sequester carbon in a detailed analysis that for the first time integrates the effects of two key factors: the natural process of forest growth and regeneration, and climate changes that are likely to alter the growth process over the next 60 years.


Climate change-induced march of treelines halted by unsuitable soils

New research from the University of Guelph is dispelling a commonly held assumption about climate change and its impact on forests in Canada and abroad.


Rice plants evolve to adapt to flooding

Although water is essential for plant growth, excessive amounts can waterlog and kill a plant. In South and Southeast Asia, where periodic flooding occurs during the rainy season, the water depth can reach several meters for many months.