Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Forests may lose ability to protect against extremes of climate change

Forests, one of the most dominate ecosystems on Earth, harbor significant biodiversity. Scientists have become increasingly interested in how this diversity is enhanced by the sheltering microclimates produced by trees.

A recent University of Montana study suggests that a warming climate in the Pacific Northwest would lessen the capacity of many forest microclimates to moderate climate extremes in the future.

The study was published in Ecography.

"Forest canopies produce microclimates that are less variable and more stable than similar settings without forest cover," said Kimberley Davis, a UM postdoctoral research associate and the lead author of the study. "Our work shows that the ability of forests to buffer climate extremes is dependent on canopy cover and local moisture availability -- both of which are expected to change as the Earth warms."

She said many plants and animals that live in the understory of forests rely on the stable climate conditions found there. The study suggests some forests will lose their capacity to buffer climate extremes as water becomes limited at many sites.

"Changes in water balance, combined with accelerating canopy losses due to increases in the frequency and severity of disturbance, will create many changes in the microclimate conditions of western U.S. forests," Davis said.

Read the paper: Microclimatic buffering in forests of the future: The role of local water balance.

Article source: University of Montana.

News

Plant mothers 'talk' to their embryos via the hormone auxin

While pregnancy in humans and seed development in plants look very different, parallels exist -- not least that the embryo develops in close connection with the mother. In animals, a whole network of signals from the mother is known to influence embryo development. In plants, it has been clear for a while that maternal signals regulate embryo development. However, the signal itself was unknown -- until now. Plant scientists at the Institute of Science and Technology Austria (IST Austria), Central European Institute of Technology (CEITEC) and the University of Freiburg have now found that a plant hormone, called auxin, from the mother is one of the signals that pattern the plant embryo. Their study is published in Nature Plants.


Archaeologists discover bread that predates agriculture by 4,000 years

At an archaeological site in northeastern Jordan, researchers have discovered the charred remains of a flatbread baked by hunter-gatherers 14,400 years ago. It is the oldest direct evidence of bread found to date, predating the advent of agriculture by at least 4,000 years. The findings suggest that bread production based on wild cereals may have encouraged hunter-gatherers to cultivate cereals, and thus contributed to the agricultural revolution in the Neolithic period.


Climate change-induced march of treelines halted by unsuitable soils

New research from the University of Guelph is dispelling a commonly held assumption about climate change and its impact on forests in Canada and abroad.