Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Forests may lose ability to protect against extremes of climate change

Forests, one of the most dominate ecosystems on Earth, harbor significant biodiversity. Scientists have become increasingly interested in how this diversity is enhanced by the sheltering microclimates produced by trees.

A recent University of Montana study suggests that a warming climate in the Pacific Northwest would lessen the capacity of many forest microclimates to moderate climate extremes in the future.

The study was published in Ecography.

"Forest canopies produce microclimates that are less variable and more stable than similar settings without forest cover," said Kimberley Davis, a UM postdoctoral research associate and the lead author of the study. "Our work shows that the ability of forests to buffer climate extremes is dependent on canopy cover and local moisture availability -- both of which are expected to change as the Earth warms."

She said many plants and animals that live in the understory of forests rely on the stable climate conditions found there. The study suggests some forests will lose their capacity to buffer climate extremes as water becomes limited at many sites.

"Changes in water balance, combined with accelerating canopy losses due to increases in the frequency and severity of disturbance, will create many changes in the microclimate conditions of western U.S. forests," Davis said.

Read the paper: Microclimatic buffering in forests of the future: The role of local water balance.

Article source: University of Montana.

News

Hot temperatures can trigger an RNA response in plants

The stress of hotter temperatures may trigger a response in a plant's RNA, or ribonucleic acid — part of a cell's genetic messaging system — to help manage this change in its environment, according to a team of Penn State researchers.


Study provides whole-system view of plant cold stress

When temperatures drop, plants can’t bundle up. Stuck outside, exposed, plants instead undergo a series of biochemical changes that protect cells from damage. Scientists have described these changes and identified some of the genes controlling them, but it’s not clear how all the processes work together. Lacking this global view, plant breeders have struggled to engineer cold-tolerant crops.


Photosynthesis Like a Moss

Moss evolved after algae but before vascular land plants, such as ferns and trees, making them an interesting target for scientists studying photosynthesis, the process by which plants convert sunlight to fuel. Now researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have made a discovery that could shed light on how plants evolved to move from the ocean to land.